Analysis of a Class of Heaviside Composite Minimization Problems

Shaoning Han

Department of Mathematics National University of Singapore

ICCOPT, July 2025

Collaborators

Ying Cui IEOR, UC Berkeley

Jong-Shi Pang ISE, USC

Introduction

Heaviside Composite Optimization Problem

$$\min_{x \in \mathbb{R}^n} \sum_{j=1}^k f_{0j}(x) \underbrace{\mathbb{I}_{\mathbb{R}_{++}}(g_{0j}(x))}_{\text{composite indicator}}$$
s.t. $x \in X_{HSC} \stackrel{\text{def}}{=} \left\{ x \in P : \sum_{j=1}^k f_{ij}(x) \mathbb{I}_{\mathbb{R}_{++}}(g_{ij}(x)) \le b_i, \ i \in [m] \right\}$ (HSC)

where

- P is a polyhedron
- $f_{ii}, g_{ii} : \mathbb{R}^n \to \mathbb{R}$ are tractable continuous functions
- $\mathbb{I}_{\mathbb{R}_{++}}(\bullet)$ is the Heaviside function defined by

$$\mathbb{I}_{\mathbb{R}_{++}}\!(t) = egin{cases} 1 & ext{if } t > 0 \ 0 & ext{if } t \leq 0. \end{cases}$$

• $\mathbb{I}_{\mathbb{R}_{++}}(g_{ij}(x))$ captures the discrete structure or logical conditions of the problem

Some problem sources

 $| \bullet |_{0}$ -Optimization Given observations (a^{i}, y_{i}) , consider regression problem

$$\min \sum_{i=1}^{m} (\langle a^i, x \rangle - y_i)^2$$

s.t.
$$(|x_1|_0, \dots, |x_n|_0) \in X$$
,

where

$$ullet |t|_0=\mathbb{I}_{\mathbb{R}_{++}}(|t|)=egin{cases} 0 & ext{if } t=0\ 1 & ext{if } t
eq 0. \end{cases}$$

(b) Group sparsity $|x_i|_0 = |x_i|_0$ if $i, j \in \mathcal{G}_k$

(c) Hierarchy structure $|x_i|_0 \le |x_i|_0$

Some problem sources - stochastic optimization

Chance constraint

$$\mathbb{P}[g_1(x,\xi) > 0] \leq \mathbb{P}[g_2(x,\xi) > 0] = \mathbb{E}[\mathbb{I}_{\mathbb{R}_{++}}(g_2(x,\xi))]$$

Sample average approximation (SAA) \Rightarrow

$$\frac{1}{N}\sum_{s=1}^{N}\mathbb{I}_{\mathbb{R}_{++}}(g_1(x,\xi^s))-\frac{1}{N}\sum_{s=1}^{N}\mathbb{I}_{\mathbb{R}_{++}}(g_2(x,\xi^s))\leq 0$$

Conditional expectation

$$b \geq \mathbb{E}[f(x,\xi)|g(x,\xi) > 0] = \frac{\mathbb{E}[f(x,\xi)\mathbb{I}_{\mathbb{R}_{++}}(g(x,\xi))]}{\mathbb{P}[g(x,\xi)]}$$

Sample average approximation (SAA) \Rightarrow

$$\frac{1}{N} \sum_{s=1}^{N} f(x, \xi^{s}) \mathbb{I}_{\mathbb{R}_{++}}(g(x, \xi^{s})) - \frac{b}{N} \sum_{s=1}^{N} \mathbb{I}_{\mathbb{R}_{++}}(g(x, \xi^{s})) \leq 0$$

,

Outline

In the rest of this talk, we present some elementary analysis

- Closedness and MILP-representability
- Optimality conditions

Reformulation via lifting

Consider

$$X_{ASC} = \left\{ x \in P : \sum_{j=1}^{n} a_{ij} | x_j |_0 \le b_i, \ i = 1, \dots, m \right\}.$$

Reformulation technique in MIP Introduce indicator/switch variables $z_i \in \{0,1\}$ in place of $|x_i|_0$ and get

$$\tilde{X}_{ASC} = \left\{ \begin{aligned} \sum_{j=1}^{n} a_{ij} z_{j} &\leq b_{i}, \ i = 1, \dots, m \\ x_{j} (1 - z_{j}) &= 0 \text{ or } -M z_{j} \leq x_{j} \leq M z_{j} \ \forall j = 1, \dots, n \\ x &\in P, \ z \in \{0, 1\}^{n} \end{aligned} \right\}$$

Question: $\operatorname{proj}_{x}(\tilde{X}_{ASC}) = X_{ASC}$

Consider

$$X_{ASC} = \left\{ x \in P : \sum_{j=1}^{n} a_{ij} | x_j |_0 \le b_i, \ i = 1, \dots, m \right\}.$$

Reformulation technique in MIP Introduce indicator/switch variables $z_i \in \{0,1\}$ in place of $|x_i|_0$ and get

$$\tilde{X}_{ASC} = \left\{ \begin{aligned} \sum_{j=1}^{n} a_{ij} z_{j} &\leq b_{i}, \ i = 1, \dots, m \\ x_{j} (1 - z_{j}) &= 0 \text{ or } -M z_{j} \leq x_{j} \leq M z_{j} \ \forall j = 1, \dots, n \\ x &\in P, \ z \in \{0, 1\}^{n} \end{aligned} \right\}$$

Question: $\operatorname{proj}_{X}(\tilde{X}_{ASC}) = X_{ASC}$?

Consider

$$X_{ASC} = \left\{ x \in P : \sum_{j=1}^{n} a_{ij} | x_j |_0 \le b_i, \ i = 1, \dots, m \right\}.$$

Reformulation technique in MIP Introduce indicator/switch variables $z_i \in \{0,1\}$ in place of $|x_i|_0$ and get

$$ilde{X}_{ASC} = \left\{ egin{aligned} & \sum_{j=1}^n a_{ij} z_j \leq b_i, \ i = 1, \dots, m \ & x_j (1 - z_j) = 0 \ ext{or} - M z_j \leq x_j \leq M z_j \ orall j = 1, \dots, n \end{aligned}
ight\} \ & x \in P, \ z \in \{0, 1\}^n \end{cases}$$

Question: $\operatorname{proj}_{X}(\tilde{X}_{ASC}) = X_{ASC}? \Rightarrow \text{NO!}$

• If $a_{ij} \geq 0 \ \forall i, j$, then X_{ASC} is closed.

Consider

$$X_{ASC} = \left\{ x \in P : \sum_{j=1}^{n} a_{ij} | x_j |_0 \le b_i, \ i = 1, \dots, m \right\}.$$

Reformulation technique in MIP Introduce indicator/switch variables $z_i \in \{0,1\}$ in place of $|x_i|_0$ and get

$$\tilde{X}_{ASC} = \left\{ (x, z) : \sum_{j=1}^{n} a_{ij} z_{j} \leq b_{i}, \ i = 1, \dots, m \\ x_{j} (1 - z_{j}) = 0 \text{ or } -M z_{j} \leq x_{j} \leq M z_{j} \ \forall j = 1, \dots, n \right\} \\ x \in P, \ z \in \{0, 1\}^{n}$$

Question: $\operatorname{proj}_{X}(\tilde{X}_{ASC}) = X_{ASC}? \Rightarrow \operatorname{NO}!$

- If $a_{ij} \geq 0 \ \forall i, j$, then X_{ASC} is closed.
- X_{ASC} may not be a <u>closed</u> set in general! e.g., $\{x: |x_1|_0 \le |x_2|_0\}$

,

If we take the closure of X_{ASC} ...

- The resulting solution can be infeasible for the original problem
- The resulting set could be nonsense, e.g.,

$$cl\{x: |x_1|_0 \le |x_2|_0\} = \mathbb{R}^2$$

If we take the closure of X_{ASC} ...

- The resulting solution can be infeasible for the original problem
- The resulting set could be nonsense, e.g.,

$$cl\{x: |x_1|_0 \le |x_2|_0\} = \mathbb{R}^2$$

• Computing $cl(X_{ASC})$ can be difficult

$$X = \bigcap_{i=1}^m X_i \not\Rightarrow \operatorname{cl}(X) = \bigcap_{i=1}^m \operatorname{cl}(X_i).$$

Consider
$$X_1 = \{x : |x_1|_0 \le |x_2|_0\}$$
 and $X_2 = \{x : x_2 = 0\}$. Then

$$cl(X) = cl(X_1 \cap X_2) = (0,0) \neq cl(X_1) \cap cl(X_2) = \mathbb{R} \times \{0\}.$$

For

$$X_{ASC} = \left\{ x \in P : \sum_{j=1}^{n} a_{ij} | x_j |_0 \le b_i, \ i = 1, \dots, m \right\},$$

in general we have

Proposition

There exists a matrix $\tilde{A} \ge 0$ and a $\{0,1\}$ -vector \tilde{b} such that $\operatorname{cl}(X_{ASC}) = \{x \in P : \tilde{A}|x|_0 \le \tilde{b}\}$, where $|x|_0 \in \mathbb{R}^n$ is defined by $(|x|_0)_i = |x_i|_0$.

- A point $z \in S$ is called a <u>maximal element</u> if $z' \ge z \Rightarrow z' = z \, \forall z' \in S$.
- (\tilde{A}, \tilde{b}) merely depends on the maximal elements in the support set $\{z \in \{0,1\}^n : z = |x|_0, \ x \in X_{ASC}\}$
- It is unclear how to compute (\tilde{A}, \tilde{b}) .

g

MILP representability of X_{ASC}

A set S is called MILP-representable if \exists rational matrices A, B, C and a rational vector d such that

$$S = \{x \in \mathbb{R}^n : \exists (y, z) \in \mathbb{R}^p \times \mathbb{Z}^q \text{ such that } Ax + By + Cz \le d\}.$$

Consider

$$X_{ASC} = \left\{ x \in P : \sum_{j=1}^{n} a_{ij} |x_j|_0 \le b_i, \ i = 1, \dots, m \right\}.$$

Proposition

Assume $A \ge 0$. Then X_{ASC} is MILP-representable iff $\exists M \ge 0$ s.t.

$$X_{ASC} = \left\{ x \in \mathbb{R}^n : \frac{\exists (y, z, r) \in P \times \{0, 1\}^n \times R \text{ s.t.}}{Az \le b, -Mz \le y \le Mz, \text{ and } x = y + r} \right\},$$

where $R = \{r \in P_{\infty} : r_i = 0 \forall i \notin \text{supp}(z^{\text{max}})\}$, P_{∞} is the recession cone of P, and z^{max} is a maximal element of $\{z \in \{0,1\}^n : z = |x|_0, x \in X_{ASC}\}$.

Sufficient optimality condition for HSC

Given a "stationary" solution \bar{x} to

$$\min_{x \in \mathbb{R}^n} \sum_{j=1}^k f_{0j}(x) \mathbb{I}_{\mathbb{R}_{++}}(g_{0j}(x))$$
s.t. $x \in X_{HSC} \stackrel{\text{def}}{=} \left\{ x \in P : \sum_{j=1}^k f_{ij}(x) \mathbb{I}_{\mathbb{R}_{++}}(g_{ij}(x)) \le b_i, i \in [m] \right\}$ (HSC)

Question: under what conditions, \bar{x} is a local minimizer of (HSC)?

A detour – generalization of convex functions

Consider a convex optimization problem

$$\min_{x} f(x),$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is a closed convex function. A significant feature of convex programs is

$$0 \in \partial f(x) \Rightarrow x \in \arg\min_{x} f(x).$$

A detour – generalization of convex functions

Consider a convex optimization problem

$$\min_{x} f(x),$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is a closed convex function. A significant feature of convex programs is

$$0 \in \partial f(x) \Rightarrow x \in \arg\min_{x} f(x).$$

Extension

- Quasi-convex function: every local minimizer is a global minimizer.
- Pseudo-convex/invex function: every stationary solution is a global minimizer.

A detour – generalization of convex functions

Consider a convex optimization problem

$$\min_{x} f(x),$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is a closed convex function. A significant feature of convex programs is

$$0 \in \partial f(x) \Rightarrow x \in \arg\min_{x} f(x).$$

Extension

- Quasi-convex function: every local minimizer is a global minimizer.
- Pseudo-convex/invex function: every stationary solution is a global minimizer.

Want to generalize convexity in a local manner...

Locally convex-like property

Define the directional derivative function of f at \bar{x}

$$f'(\bar{x}; x - \bar{x}) = \lim_{t \to 0} \frac{f(\bar{x} + t(x - \bar{x})) - f(\bar{x})}{t}.$$

A convex function f satisfies

Global relaxation:

$$f(x) \ge \ell_{\bar{x}}(x) \stackrel{\text{def}}{=} f(\bar{x}) + f'(\bar{x}; x - \bar{x}) \ \forall x \in \mathbb{R}^n$$

• Touching property: $f(\bar{x}) = \ell_{\bar{x}}(\bar{x})$.

Then

$$\bar{x}$$
 is a stationary solution $\Leftrightarrow \bar{x} \in \arg\min_{x \in \mathbb{R}^n} \ell_{\bar{x}}(x) \Rightarrow \bar{x} \in \arg\min_{x \in \mathbb{R}^n} f(x)$

From convexity to locally convex-like property

Define the directional derivative function of f at \bar{x}

$$f'(\bar{x};x-\bar{x})=\lim_{t\to 0}\frac{f(\bar{x}+t(x-\bar{x}))-f(\bar{x})}{t}.$$

If the function f satisfies

Local relaxation:

$$f(x) \ge \ell_{\bar{x}}(x) \stackrel{\text{def}}{=} f(\bar{x}) + f'(\bar{x}; x - \bar{x}) \ \forall x \in \mathcal{B}_r(\bar{x}) \stackrel{\text{def}}{=} \{x : \|x - \bar{x}\| \le r\}$$

• Touching property: $f(\bar{x}) = \ell_{\bar{x}}(\bar{x})$.

Then

$$\bar{x}$$
 is a stationary solution $\Leftrightarrow \bar{x} \in \underset{x \in \mathcal{B}_r(\bar{x})}{\operatorname{arg min}} \ell_{\bar{x}}(x) \Rightarrow \bar{x} \in \underset{x \in \mathcal{B}_r(\bar{x})}{\operatorname{arg min}} f(x)$

Locally convex-like functions

Locally convex-like functions A function $f : \mathbb{R}^n \to \mathbb{R}$ is called (locally) convex like at \bar{x} if there exists a neighborhood $\mathcal{B}_r(\bar{x})$ of \bar{x} such that

$$f(x) \ge f(\bar{x}) + f'(\bar{x}; x - \bar{x}), \ \forall x \in \mathcal{B}_r(\bar{x})$$

Locally convex-like functions

Locally convex-like functions A function $f : \mathbb{R}^n \to \mathbb{R}$ is called (locally) convex like at \bar{x} if there exists a neighborhood $\mathcal{B}_r(\bar{x})$ of \bar{x} such that

$$f(x) \ge f(\bar{x}) + f'(\bar{x}; x - \bar{x}), \ \forall x \in \mathcal{B}_r(\bar{x})$$

Examples

- Convex functions are locally convex-like
- Piecewise affine functions are locally convex-like
- Under mild conditions, the composition of convex and affine functions are locally convex-like.

Locally convex-like functions

Locally convex-like functions A function $f : \mathbb{R}^n \to \mathbb{R}$ is called (locally) convex like at \bar{x} if there exists a neighborhood $\mathcal{B}_r(\bar{x})$ of \bar{x} such that

$$f(x) \ge f(\bar{x}) + f'(\bar{x}; x - \bar{x}), \ \forall x \in \mathcal{B}_r(\bar{x})$$

Examples

- Convex functions are locally convex-like
- Piecewise affine functions are locally convex-like
- Under mild conditions, the composition of convex and affine functions are locally convex-like.

The gap between everywhere local convex-like property and the global convexity is Clarke regularity.

Proposition

Assume $f: \mathbb{R}^n \to \mathbb{R}$ is locally convex-like everywhere. Then

f is Clarke regular everywhere $\Leftrightarrow f$ is convex

Locally convex-like sets

Define the tangent cone of a given set S at $\bar{x} \in S$ as

$$\mathcal{T}(\bar{x};S) \stackrel{\text{def}}{=} \left\{ v \in \mathbb{R}^n : \exists \{t_k\} \downarrow 0 \text{ and } \{x^k\} \subset S \text{ s.t. } v = \lim_{k \to \infty} \frac{x^k - \bar{x}}{t_k} \right\}$$

Locally convex-like sets A set S is called locally convex-like at $\bar{x} \in S$ if there exists a neighborhood $\mathcal{B}_r(\bar{x})$ such that the relaxation property holds

$$S \cap \mathcal{B}_r(\bar{x}) \subseteq \bar{x} + \mathcal{T}(\bar{x}; S)$$

- f is locally convex like at $\bar{x} \Leftrightarrow \operatorname{epi}(f)$ is locally convex like at $(\bar{x}, f(\bar{x}))$
- Convex sets and open sets are always locally convex like
- Cartesian product/union of finitely many locally convex sets is locally convex

Locally convex-like sets

Unless suitable constraint qualification holds, the intersection of locally convex sets is generally not locally convex. In particular, the level set of a locally convex functions is not necessarily locally convex.

Figure: Intersection of two locally convex sets. X_1 and X_2 consists of the red and blue line segments, respectively; their intersection is represented by black points.

Epistationarity

Optimality condition for linear optimization over S

$$\bar{x} \in \operatorname*{arg\,min}_{x \in \mathcal{S}} c^{\top}x \Rightarrow c^{\top}v \geq 0, \ \forall v \in \mathcal{T}(\bar{x}; \mathcal{S})$$

Note $\min\{f(x): x \in S\} \Leftrightarrow \min\{t: (x,t) \in \operatorname{epi}(f), x \in S\}.$

Epistationary solution Point \bar{x} is called an <u>epistationary solution</u> of $\min\{f(x):x\in S\}$ if $(\bar{x},f(\bar{x}))$ satisfies the optimality condition for the lifted linear program over $\hat{S}\stackrel{\text{def}}{=}\{(x,t)\in\operatorname{epi}(f):x\in S\}$.

Proposition

If \bar{x} is an epistationary solution and \hat{S} is locally convex-like at $(\bar{x}, f(\bar{x}))$, then \bar{x} is a local minimizer of min $\{f(x) : x \in S\}$.

Sufficient optimality condition for HSC

Back to the Heaviside composite optimization problem,

$$\min_{x \in \mathbb{R}^n} \sum_{j=1}^k f_{0j}(x) \mathbb{I}_{\mathbb{R}_{++}}(g_{0j}(x))$$
s.t. $x \in X_{HSC} \stackrel{\text{def}}{=} \left\{ x \in P : \sum_{j=1}^k f_{ij}(x) \mathbb{I}_{\mathbb{R}_{++}}(g_{ij}(x)) \le b_i, i \in [m] \right\}$ (HSC)

To establish sufficient optimality conditions, one turns to study the local convex-like property of the lifted set

$$\hat{X}_{HSC} \stackrel{ ext{ iny def}}{=} \left\{ (x,t) : \sum_{j=1}^k f_{0j}(x) \, \mathbb{I}_{\mathbb{R}_{++}}\!(g_{0j}(x)) \leq t, \, x \in X_{\mathsf{HSC}}
ight\}$$

which itself is a HSC set.

Locally convex-like ASC constraints

Recall

$$X_{ASC} = \left\{ x \in P : \sum_{j=1}^{n} a_{ij} | x_j |_0 \le b_i, \ i = 1, \dots, m \right\}.$$

Tangent cone of X_{ASC}

$$\mathcal{T}(\bar{x};X_{ASC}) = \mathsf{cl}\left\{v \in \mathcal{T}(\bar{x};P) : \sum_{i \notin \bar{\beta}} a_{ij}|v_j|_0 \leq b_i - \sum_{j \in \beta} a_{ij}\right\},$$

where $\beta = \operatorname{supp}(\bar{x}) \stackrel{\text{def}}{=} \{i : \bar{x}_i \neq 0\}.$

Proposition

The set X_{ASC} is locally convex like at every $\bar{x} \in X_{ASC}$.

Locally convex-like HSC constraints

In general, the $\mathcal{T}(x; X_{HSC})$ does not admit a clean description

$$X_{HSC} \stackrel{\text{def}}{=} \left\{ x \in P : \sum_{j=1}^{k} f_{ij}(x) \mathbb{I}_{\mathbb{R}_{++}}(g_{ij}(x)) \leq b_{i}, \ i \in [m] \right\}$$

However, if each f_{ij} , g_{ij} is either convex or piecewise affine, we have

Proposition

The set X_{HSC} is locally convex-like at everywhere if the assumptions given by any entry of the following table is true

g _{ij}	convex	piecewise affine
convex	$f_{ij} \geq 0$	free
piecewise affine	$f_{ij} \geq 0$	free

Computation via lifting

Lifting A non-closed set can be closed in an extended space of variables. Consider

$$X_{ASC} = \left\{ x \in P : \sum_{j=1}^{n} a_{ij} | x_j |_0 \le b_i, \ i = 1, \dots, m \right\}.$$

Define

$$\tilde{X}_{ASC} = \left\{ (x, t, s, y) : \sum_{j=1}^{n} (a_{ij}^{+} + \epsilon) s_{j} \leq \sum_{j=1}^{n} (a_{ij}^{-}) t_{j} + b_{i}, i = 1, \dots, m \\
t_{j} \leq |x_{j}| y_{j}, 0 \leq t_{j} \leq 1, y_{j} \geq 0, j = 1, \dots, n \\
x_{j} (1 - s_{j}) = 0, 0 \leq s_{j} \leq 1, j = 1, \dots, n \right\}$$

Then

$$\operatorname{proj}_{x}(\tilde{X}_{ASC}) = X_{ASC}$$

and

$$\min\{f(x):x\in X_{ASC}\}\Leftrightarrow\min\{f(x):(x,t,s,y)\in\tilde{X}_{ASC}\}.$$

Computation via lifting

- ullet Similar reformulation techniques are applicable to get $ilde{X}_{HSC}$ for X_{HSC} .
- The resulting stationary solution can be weak in the original space of variables. However, at least, it is a valid solution method building on existing algorithms.

Proposition (Informal)

If $(\bar{x}, \bar{t}, \bar{y}, \bar{s})$ is an epistationary solution of f on \tilde{X}_{HSC} , then \bar{x} is a pseudostationary solution of f on X_{HSC} . Under more restrictive conditions, \bar{x} is an epistationary solution of f on X_{HSC} .

Take Home Message

Summary

- Heaviside composite optimization can lack lower semicontinuity and is challenging to solve
- ullet Locally convex-like property + epi-stationarity \Rightarrow local optimality
- Possibility of solving Heaviside via existing MILP/NLP solution methods in a lifted space

Take Home Message

Summary

- Heaviside composite optimization can lack lower semicontinuity and is challenging to solve
- ullet Locally convex-like property + epi-stationarity \Rightarrow local optimality
- Possibility of solving Heaviside via existing MILP/NLP solution methods in a lifted space

Thanks for your listening!