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Introduction

Heaviside Composite Optimization Problem

min
x∈Rn

k∑
j=1

f0j(x) IR++(g0j(x))︸ ︷︷ ︸
composite indicator

s.t. x ∈ XHSC
def
=

x ∈ P :
k∑

j=1

fij(x) IR++(gij(x)) ≤ bi , i ∈ [m]


(HSC)

where

P is a polyhedron
fij , gij : Rn → R are tractable continuous functions
IR++(•) is the Heaviside function defined by

IR++(t) =

{
1 if t > 0

0 if t ≤ 0.

IR++(gij(x)) captures the discrete structure or logical conditions of the
problem
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Some problem sources

| • |0-Optimization Given observations (ai , yi ), consider regression problem

min
m∑
i=1

(⟨ai , x⟩ − yi )
2

s.t.
(
|x1|0, . . . , |xn|0

)
∈ X ,

where

|t|0 = IR++(|t|) =

{
0 if t = 0

1 if t ̸= 0.

(a) Sparsity∑
i |xi |0 ≤ k

(b) Group sparsity
|xi |0 = |xj |0 if i , j ∈ Gk

(c) Hierarchy structure
|xi |0 ≤ |xj |0 4



Some problem sources - stochastic optimization

Chance constraint

P[g1(x , ξ) > 0] ≤ P[g2(x , ξ) > 0] = E[IR++(g2(x , ξ))]

Sample average approximation (SAA) ⇒

1

N

N∑
s=1

IR++(g1(x , ξ
s))− 1

N

N∑
s=1

IR++(g2(x , ξ
s)) ≤ 0

Conditional expectation

b ≥ E[f (x , ξ)|g(x , ξ) > 0] =
E[f (x , ξ)IR++(g(x , ξ))]

P[g(x , ξ)]

Sample average approximation (SAA) ⇒

1

N

N∑
s=1

f (x , ξs)IR++(g(x , ξ
s))− b

N

N∑
s=1

IR++(g(x , ξ
s)) ≤ 0
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Outline

In the rest of this talk, we present some elementary analysis

Closedness and MILP-representability

Optimality conditions

Reformulation via lifting
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Closedness

Consider

XASC =

x ∈ P :
n∑

j=1

aij |xj |0 ≤ bi , i = 1, . . . ,m

 .

Reformulation technique in MIP Introduce indicator/switch variables
zi ∈ {0, 1} in place of |xi |0 and get

X̃ASC =

(x , z) :

n∑
j=1

aijzj ≤ bi , i = 1, . . . ,m

xj(1− zj) = 0 or−Mzj ≤ xj ≤ Mzj ∀j = 1, . . . , n

x ∈ P, z ∈ {0, 1}n


Question: projx(X̃ASC ) = XASC

?⇒ NO!

If aij ≥ 0 ∀i , j , then XASC is closed.

XASC may not be a closed set in general! e.g., .{x : |x1|0 ≤ |x2|0}

7



Closedness

Consider

XASC =

x ∈ P :
n∑

j=1

aij |xj |0 ≤ bi , i = 1, . . . ,m

 .

Reformulation technique in MIP Introduce indicator/switch variables
zi ∈ {0, 1} in place of |xi |0 and get

X̃ASC =

(x , z) :

n∑
j=1

aijzj ≤ bi , i = 1, . . . ,m

xj(1− zj) = 0 or−Mzj ≤ xj ≤ Mzj ∀j = 1, . . . , n

x ∈ P, z ∈ {0, 1}n


Question: projx(X̃ASC ) = XASC?

⇒ NO!

If aij ≥ 0 ∀i , j , then XASC is closed.

XASC may not be a closed set in general! e.g., .{x : |x1|0 ≤ |x2|0}

7



Closedness

Consider

XASC =

x ∈ P :
n∑

j=1

aij |xj |0 ≤ bi , i = 1, . . . ,m

 .

Reformulation technique in MIP Introduce indicator/switch variables
zi ∈ {0, 1} in place of |xi |0 and get

X̃ASC =

(x , z) :

n∑
j=1

aijzj ≤ bi , i = 1, . . . ,m

xj(1− zj) = 0 or−Mzj ≤ xj ≤ Mzj ∀j = 1, . . . , n

x ∈ P, z ∈ {0, 1}n


Question: projx(X̃ASC ) = XASC?⇒ NO!

If aij ≥ 0 ∀i , j , then XASC is closed.

XASC may not be a closed set in general! e.g., .{x : |x1|0 ≤ |x2|0}

7



Closedness

Consider

XASC =

x ∈ P :
n∑

j=1

aij |xj |0 ≤ bi , i = 1, . . . ,m

 .

Reformulation technique in MIP Introduce indicator/switch variables
zi ∈ {0, 1} in place of |xi |0 and get

X̃ASC =

(x , z) :

n∑
j=1

aijzj ≤ bi , i = 1, . . . ,m

xj(1− zj) = 0 or−Mzj ≤ xj ≤ Mzj ∀j = 1, . . . , n

x ∈ P, z ∈ {0, 1}n


Question: projx(X̃ASC ) = XASC?⇒ NO!

If aij ≥ 0 ∀i , j , then XASC is closed.

XASC may not be a closed set in general! e.g., .{x : |x1|0 ≤ |x2|0}
7



Closedness

If we take the closure of XASC ...

The resulting solution can be infeasible for the original problem

The resulting set could be nonsense, e.g.,

cl{x : |x1|0 ≤ |x2|0} = R2

Computing cl(XASC ) can be difficult

X =
m⋂
i=1

Xi ̸⇒ cl(X ) =
m⋂
i=1

cl(Xi ).

Consider X1 = {x : |x1|0 ≤ |x2|0} and X2 = {x : x2 = 0}. Then

cl(X ) = cl(X1 ∩ X2) = (0, 0) ̸= cl(X1) ∩ cl(X2) = R× {0}.
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Closedness

For

XASC =

x ∈ P :
n∑

j=1

aij |xj |0 ≤ bi , i = 1, . . . ,m

 ,

in general we have

Proposition

There exists a matrix Ã ≥ 0 and a {0, 1}-vector b̃ such that
cl(XASC ) = {x ∈ P : Ã|x |0 ≤ b̃}, where |x |0 ∈ Rn is defined by
(|x |0)i = |xi |0.

A point z ∈ S is called a maximal element if z ′ ≥ z ⇒ z ′ = z ∀z ′ ∈ S .

(Ã, b̃) merely depends on the maximal elements in the support set
{z ∈ {0, 1}n : z = |x |0, x ∈ XASC}

It is unclear how to compute (Ã, b̃).
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MILP representability of XASC

A set S is called MILP-representable if ∃ rational matrices A,B,C and a
rational vector d such that

S = {x ∈ Rn : ∃(y , z) ∈ Rp × Zq such that Ax + By + Cz ≤ d}.
Consider

XASC =

x ∈ P :
n∑

j=1

aij |xj |0 ≤ bi , i = 1, . . . ,m

 .

Proposition

Assume A ≥ 0. Then XASC is MILP-representable iff ∃M ≥ 0 s.t.

XASC =

{
x ∈ Rn :

∃(y , z , r) ∈ P × {0, 1}n × R s.t.

Az ≤ b, −Mz ≤ y ≤ Mz , and x = y + r

}
,

where R = {r ∈ P∞ : ri = 0∀i /∈ supp(zmax)}, P∞ is the recession cone of
P, and zmax is a maximal element of {z ∈ {0, 1}n : z = |x |0, x ∈ XASC}.
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Sufficient optimality condition for HSC

Given a “stationary” solution x̄ to

min
x∈Rn

k∑
j=1

f0j(x) IR++(g0j(x))

s.t. x ∈ XHSC
def
=

x ∈ P :
k∑

j=1

fij(x) IR++(gij(x)) ≤ bi , i ∈ [m]


(HSC)

Question: under what conditions, x̄ is a local minimizer of (HSC)?
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A detour – generalization of convex functions

Consider a convex optimization problem

min
x

f (x),

where f : Rn → R is a closed convex function. A significant feature of
convex programs is

0 ∈ ∂f (x) ⇒ x ∈ argmin
x

f (x).

Extension

Quasi-convex function: every local minimizer is a global minimizer.

Pseudo-convex/invex function: every stationary solution is a global
minimizer.

Want to generalize convexity in a local manner...
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Locally convex-like property

Define the directional derivative function of f at x̄

f ′(x̄ ; x − x̄) = lim
t→0

f (x̄ + t(x − x̄))− f (x̄)

t
.

A convex function f satisfies

Global relaxation:

f (x) ≥ ℓx̄(x)
def
= f (x̄) + f ′(x̄ ; x − x̄) ∀x ∈ Rn

Touching property: f (x̄) = ℓx̄(x̄).

Then

x̄ is a stationary solution ⇔ x̄ ∈ argmin
x∈Rn

ℓx̄(x) ⇒ x̄ ∈ argmin
x∈Rn

f (x)
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From convexity to locally convex-like property

Define the directional derivative function of f at x̄

f ′(x̄ ; x − x̄) = lim
t→0

f (x̄ + t(x − x̄))− f (x̄)

t
.

If the function f satisfies

Local relaxation:

f (x) ≥ ℓx̄(x)
def
= f (x̄) + f ′(x̄ ; x − x̄) ∀x ∈ Br (x̄)

def
= {x : ∥x − x̄∥ ≤ r}

Touching property: f (x̄) = ℓx̄(x̄).

Then

x̄ is a stationary solution ⇔ x̄ ∈ argmin
x∈Br (x̄)

ℓx̄(x) ⇒ x̄ ∈ argmin
x∈Br (x̄)

f (x)
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Locally convex-like functions

Locally convex-like functions A function f : Rn → R is called (locally)
convex like at x̄ if there exists a neighborhood Br (x̄) of x̄ such that

f (x) ≥ f (x̄) + f ′(x̄ ; x − x̄), ∀x ∈ Br (x̄)

Examples

Convex functions are locally convex-like

Piecewise affine functions are locally convex-like

Under mild conditions, the composition of convex and affine functions
are locally convex-like.

The gap between everywhere local convex-like property and the global
convexity is Clarke regularity.

Proposition

Assume f : Rn → R is locally convex-like everywhere. Then

f is Clarke regular everywhere ⇔ f is convex
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Locally convex-like sets

Define the tangent cone of a given set S at x̄ ∈ S as

T (x̄ ; S)
def
=

{
v ∈ Rn : ∃{tk} ↓ 0 and {xk} ⊂ S s.t. v = lim

k→∞

xk − x̄

tk

}
Locally convex-like sets A set S is called locally convex-like at x̄ ∈ S if
there exists a neighborhood Br (x̄) such that the relaxation property holds

S ∩ Br (x̄) ⊆ x̄ + T (x̄ ; S)

f is locally convex like at x̄ ⇔ epi(f ) is locally convex like at (x̄ , f (x̄))

Convex sets and open sets are always locally convex like

Cartesian product/union of finitely many locally convex sets is locally
convex
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Locally convex-like sets

Unless suitable constraint qualification holds, the intersection of locally
convex sets is generally not locally convex. In particular, the level set of a
locally convex functions is not necessarily locally convex.

Figure: Intersection of two locally convex sets. X1 and X2 consists of the red and
blue line segments, respectively; their intersection is represented by black points.
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Epistationarity

Optimality condition for linear optimization over S

x̄ ∈ argmin
x∈S

c⊤x ⇒ c⊤v ≥ 0, ∀v ∈ T (x̄ ; S)

Note min{f (x) : x ∈ S} ⇔ min{t : (x , t) ∈ epi(f ), x ∈ S}.

Epistationary solution Point x̄ is called an epistationary solution of
min{f (x) : x ∈ S} if (x̄ , f (x̄)) satisfies the optimality condition for the

lifted linear program over Ŝ
def
= {(x , t) ∈ epi(f ) : x ∈ S}.

Proposition

If x̄ is an epistationary solution and Ŝ is locally convex-like at (x̄ , f (x̄)),
then x̄ is a local minimizer of min{f (x) : x ∈ S}.
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Sufficient optimality condition for HSC

Back to the Heaviside composite optimization problem,

min
x∈Rn

k∑
j=1

f0j(x) IR++(g0j(x))

s.t. x ∈ XHSC
def
=

x ∈ P :
k∑

j=1

fij(x) IR++(gij(x)) ≤ bi , i ∈ [m]


(HSC)

To establish sufficient optimality conditions, one turns to study the local
convex-like property of the lifted set

X̂HSC
def
=

(x , t) :
k∑

j=1

f0j(x) IR++(g0j(x)) ≤ t, x ∈ XHSC


which itself is a HSC set.
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Locally convex-like ASC constraints

Recall

XASC =

x ∈ P :
n∑

j=1

aij |xj |0 ≤ bi , i = 1, . . . ,m

 .

Tangent cone of XASC

T (x̄ ;XASC ) = cl

v ∈ T (x̄ ;P) :
∑
i /∈β̄

aij |vj |0 ≤ bi −
∑
j∈β

aij

 ,

where β = supp(x̄)
def
= {i : x̄i ̸= 0}.

Proposition

The set XASC is locally convex like at every x̄ ∈ XASC .
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Locally convex-like HSC constraints

In general, the T (x ;XHSC ) does not admit a clean description

XHSC
def
=

x ∈ P :
k∑

j=1

fij(x) IR++(gij(x)) ≤ bi , i ∈ [m]


However, if each fij , gij is either convex or piecewise affine, we have

Proposition

The set XHSC is locally convex-like at everywhere if the assumptions given
by any entry of the following table is true

fij

gij convex piecewise affine

convex fij ≥ 0 free

piecewise affine fij ≥ 0 free
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Computation via lifting

Lifting A non-closed set can be closed in an extended space of variables.
Consider

XASC =

x ∈ P :
n∑

j=1

aij |xj |0 ≤ bi , i = 1, . . . ,m

 .

Define

X̃ASC =

(x , t, s, y) :

n∑
j=1

(a+ij + ϵ)sj ≤
n∑

j=1

(a−ij )tj + bi , i = 1, . . . ,m

tj ≤ |xj |yj , 0 ≤ tj ≤ 1, yj ≥ 0, j = 1, . . . , n

xj(1− sj) = 0, 0 ≤ sj ≤ 1, j = 1, . . . , n


Then

proj
x

(X̃ASC ) = XASC

and
min{f (x) : x ∈ XASC} ⇔ min{f (x) : (x , t, s, y) ∈ X̃ASC}.
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Computation via lifting

Similar reformulation techniques are applicable to get X̃HSC for XHSC .

The resulting stationary solution can be weak in the original space of
variables. However, at least, it is a valid solution method building on
existing algorithms.

Proposition (Informal)

If (x̄ , t̄, ȳ , s̄) is an epistationary solution of f on X̃HSC , then x̄ is a
pseudostationary solution of f on XHSC . Under more restrictive conditions,
x̄ is an epistationary solution of f on XHSC .
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Take Home Message

Summary

Heaviside composite optimization can lack lower semicontinuity and is
challenging to solve

Locally convex-like property + epi-stationarity ⇒ local optimality

Possibility of solving Heaviside via existing MILP/NLP solution
methods in a lifted space

Thanks for your listening!
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