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Heaviside Composite Optimization Problem

Xng]iRD" Z f(-)_j ]IR++ go_[(x))

composite indicator (HSC)

st. x€Xusc Z{xeP: Z fi(x) Ir, (gi(x)) < by, i € [m]

j=1
where
@ P is a polyhedron
o fij,gjj : R" — R are tractable continuous functions

° H]R++(°) is the Heaviside function defined by
1 ift>0
Ig, (t) =
R(t) {o if t <0.

o Ir, (gj(x)) captures the discrete structure or logical conditions of the
problem



| @ |o-Optimization Given observations (a', y;), consider regression problem
m
min (a1 x) i)
i=1

s.t. (|X1’0, RN ‘Xn|0) € X,

where

0 ift=0
o [tlo =Ir,([t]) = {

1 ift#0.

(a) Sparsity (b) Group sparsity (c) Hierarchy structure
>oilxilo < k [xilo = |xjlo if i,j € Gk [xilo < |xjlo 4



Chance constraint

Plgi(x, &) > 0] < Plga(x, €) > 0] = E[lr, ,(g2(x, £))]

Sample average approximation (SAA) =

1Y 1Y
N ;HR++(g1(X>£S)) N ;HR++(g2(Xa€S)) <0

Conditional expectation

E[f(X, g)HR++(g(Xa 6))]

b > E[f(x,§)lg(x,§) > 0] = Plg(x,&)]

Sample average approximation (SAA) =

1 b
5 2 (8 (806 €7) — 3 D _Tm.(8(x,€7) <0
s=1 s=1



In the rest of this talk, we present some elementary analysis
@ Closedness and MILP-representability
o Optimality conditions

@ Reformulation via lifting



Consider

n
Xasc = XEP:Za;j\xj-Iogb;, i=1,....m
j=1

Reformulation technique in MIP Introduce indicator/switch variables
z; € {0,1} in place of |x|o and get

n
E a,'J'Z_,'Sb,', izl,...,m
J=1

Xasc = (x,2): / _
xj(l—z)=0o0or—Mz; <x; <Mz Vj=1,...,n

xe P, ze{0,1}"

Question: proj, (Xasc) = Xasc
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Consider

n
Xasc = XEP:Za;j\xj-logb;, i=1,....m
j=1

Reformulation technique in MIP Introduce indicator/switch variables
z; € {0,1} in place of |x|o and get

n
E ajzi< by, i=1,....,m
J=1

Xasc = (x,2): / _
xj(l—z)=0o0or—Mz; <x; <Mz Vj=1,...,n

xe P, ze{0,1}"
Question: pron()N(Asc) = Xasc?= NO!

e If 2 > 0Vi,j, then Xxasc is closed.
@ Xasc may not be a closed set in general! e.g., .{x:|x1]o < |x2|0}



If we take the closure of Xasc...
@ The resulting solution can be infeasible for the original problem

@ The resulting set could be nonsense, e.g.,

Cl{X . ‘Xllo S |X2’0} = Rz



If we take the closure of Xasc...
@ The resulting solution can be infeasible for the original problem

@ The resulting set could be nonsense, e.g.,

Cl{X . ‘Xllo S |X2’0} = Rz

e Computing cl(Xasc) can be difficult

m

X=X # d(X)=[)c(X).

i=1 i=1
Consider X1 = {x : |x1]o < |x2]o} and X2 = {x : xo = 0}. Then

cd(X) = d(X1 N X2) = (0,0) # cl(X;) N cl(X2) = R x {0}



For
n
Xasc = XEP:Za,'J'|XJ"0§b,', i=1,...,mp,
Jj=1

in general we have

Proposition

There exists a matrix 15 >0 and a {0, 1}-vector b such that
cl(Xasc) = {x € P: Alx|o < b}, where |x|o € R" is defined by
(Ixlo)i = Ixilo-

@ A point z € S is called a maximal element if 2/ > z = 2/ = zVZ € §S.

o (A, b) merely depends on the maximal elements in the support set
{z€{0,1}": z = |x|o, x € Xasc}

e It is unclear how to compute (A, b).



A set S is called MILP-representable if 3 rational matrices A, B, C and a

rational vector d such that
S={xeR":3(y,z) € R? x Z9 such that Ax + By + Cz < d}.
Consider

n
Xasc = XEP:ZQU|){,'|0§bi,i=1,...,m
j=1

Proposition
Assume A > 0. Then Xasc is MILP-representable iff AM > 0 s.t.

Ay,z,r) € Px{0,1}" x R s.t.

Xasc = { X € R": )
Az< b, —Mz<y< Mz, andx=y+r

where R = {r € Py : ri = OVi ¢ supp(z™®*)}, Pw is the recession cone of

P, and z™** is a maximal element of {z € {0,1}" : z = |x|o, x € Xasc}.
10




Given a “stationary” solution X to

Xnémn Z ﬁ)] ]I]R++(g01 ))

(HSC)

k
st. x € Xusc £Ax€P Y fi(x) g, (gi(x)) < by, i € [m]
j=1

Question: under what conditions, X is a local minimizer of (HSC)?

11



Consider a convex optimization problem
min f(x),
X

where f : R” — R is a closed convex function. A significant feature of
convex programs is

0 € 0f(x) = x € argmin f(x).

12



Consider a convex optimization problem
min f(x),
X

where f : R” — R is a closed convex function. A significant feature of
convex programs is

0 € 0f(x) = x € argmin f(x).

Extension
@ Quasi-convex function: every local minimizer is a global minimizer.

@ Pseudo-convex/invex function: every stationary solution is a global
minimizer.

12



Consider a convex optimization problem
min f(x),
X

where f : R” — R is a closed convex function. A significant feature of
convex programs is

0 € 0f(x) = x € argmin f(x).

Extension
@ Quasi-convex function: every local minimizer is a global minimizer.

@ Pseudo-convex/invex function: every stationary solution is a global
minimizer.

Want to generalize convexity in a local manner...
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Define the directional derivative function of f at X

F(Rix ) = lim F(% + t(x —tx)) (%)

A convex function f satisfies

@ Global relaxation:

f(x) > lx(x) E F(R) + f/(X;x — X) ¥x € R"

@ Touching property: f(x) = lz(X).
Then

X is a stationary solution < X € arg min l5x(x) = X € arg min f(x)
x€ERN x€ERN

13



Define the directional derivative function of f at X

F(Fx—9) = lm F(%+ t(x —tx)) (%)

If the function f satisfies

@ Local relaxation:

F(x) > Lx(x) ZF(R) + F(x;x —R)Ux € BA(X) E {x: |x = x| < r}

e Touching property: f(X) = (x(X).
Then

X is a stationary solution < X € arg min {5(x) = X € arg min f(x)
Xx€B(X) xe€B(X)

14



Locally convex-like functions A function f : R” — R is called (locally)
convex like at X if there exists a neighborhood B,(X) of X such that

f(x) > f(x) + f'(%;x — X), Vx € B,(x)
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Locally convex-like functions A function f : R” — R is called (locally)
convex like at X if there exists a neighborhood B,(X) of X such that

f(x) > f(x) + f'(%;x — X), Vx € B,(x)

Examples
@ Convex functions are locally convex-like
@ Piecewise affine functions are locally convex-like
@ Under mild conditions, the composition of convex and affine functions
are locally convex-like.
The gap between everywhere local convex-like property and the global
convexity is Clarke regularity.

Proposition

Assume f : R" — R is locally convex-like everywhere. Then

f is Clarke regular everywhere < f is convex

15



Define the tangent cone of a given set S at X € S as

k_ =
T(Y;S)(j:ef{veR": It} L0and {x} c Sst. v= lim X X}
k—oo i

Locally convex-like sets A set S is called locally convex-like at x € S if
there exists a neighborhood B,(x) such that the relaxation property holds

SNB(x) CX+T(x;S)

o f is locally convex like at X < epi(f) is locally convex like at (X, f(X))
@ Convex sets and open sets are always locally convex like

o Cartesian product/union of finitely many locally convex sets is locally
convex

16



Unless suitable constraint qualification holds, the intersection of locally
convex sets is generally not locally convex. In particular, the level set of a
locally convex functions is not necessarily locally convex.

T

T9 = f(I—ll__— —————— -

-
-

Zy

Figure: Intersection of two locally convex sets. X; and X, consists of the red and

blue line segments, respectively; their intersection is represented by black points.
17



Optimality condition for linear optimization over S

X e€argminc' x=c'v>0, YveT(x5)
x€S

Note min{f(x) : x € S} & min{t: (x,t) € epi(f),x € S}.

Epistationary solution Point X is called an epistationary solution of
min{f(x) : x € S} if (X, f(X)) satisfies the optimality condition for the
lifted linear program over § = {(x, t) € epi(f) : x € S}.

Proposition

If X is an epistationary solution and § is locally convex-like at (X, (X)),
then X is a local minimizer of min{f(x) : x € S}.

18



Back to the Heaviside composite optimization problem,

min Zﬁ)] ]I]R++(g01 ))

x€eRn

(HSC)

k
st x € Xusc EAxE€P Y fi(x) I, (g5(x)) < by, i € [m]
j=1

To establish sufficient optimality conditions, one turns to study the local
convex-like property of the lifted set

k
Xusc £ 06,1) Y () T, (80j(x)) < t, x € Xusc
j=1

which itself is a HSC set.

19



Recall

n
Xasc = XGP:Za;j\xj-\ogb;, i=1,...,m
j=1

Tangent cone of Xasc
T()_(;XASC):CI VGT()_(; P)ZQU’VAOS[)I—ZQU ,
i¢p jes

where 8 = supp(X) £ {i : X; # 0}.
Proposition
The set Xasc is locally convex like at every X € Xasc.

20



In general, the T (x; Xysc) does not admit a clean description

k
Xnsc £ x € P2y fi(x) I, (gi(x)) < bi, i € [m]

However, if each fj;, gj; is either convex or piecewise affine, we have

Proposition

The set Xysc is locally convex-like at everywhere if the assumptions given

j=t

by any entry of the following table is true

&ij

p convex | piecewise affine
i

convex fi >0 free
piecewise affine | f;; >0 free

21



Lifting A non-closed set can be closed in an extended space of variables.
Consider

n
Xasc =4 xE€P:Y ajlxlo< by, i=1,....m
j=1
Define

n

D (a5 +e)s <Z(au)g+b,, =1,....m

j=1
thlleyja OStJSLszO?J:laan
x(1—5)=0,0<s <1, j=1,...n

)?ASC: (X,t,S,y):

Then R
proj(Xasc) = Xasc
and y
min{f(x) : x € Xasc} < min{f(x) : (x,t,s,y) € Xasc}.

22



@ Similar reformulation techniques are applicable to get Xusc for Xusc.

@ The resulting stationary solution can be weak in the original space of
variables. However, at least, it is a valid solution method building on

existing algorithms.

Proposition (Informal)

If (x,t,y,5) is an epistationary solution of f on Xusc, then X is a
pseudostationary solution of f on Xysc. Under more restrictive conditions,
X is an epistationary solution of f on Xysc.

23



Summary

@ Heaviside composite optimization can lack lower semicontinuity and is
challenging to solve

@ Locally convex-like property + epi-stationarity = local optimality

@ Possibility of solving Heaviside via existing MILP/NLP solution
methods in a lifted space
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challenging to solve

@ Locally convex-like property + epi-stationarity = local optimality
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Thanks for your listening!
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