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Heaviside Composite Optimization Problem

mln Z fo; (x) Ir, (80;(x))

composite indicator
k

st x € Xusc Z{x € P| Y f(x) Ik, (g5(x)) < bj, i € [m]
j=1

(HSC)

where
@ P CR"is a polyhedron

e fij,gj : R" — R are tractable continuous functions



Heaviside Composite Optimization Problem
k

mln Z foj (x) Ik, . (&0j(x))

composite indicator
k

st x € Xusc Z{x € P| Y f(x) Ik, (g5(x) < by, i € [m]
j=1

(HSC)

where

o P C R"is a polyhedron

e fij,gj : R" — R are tractable continuous functions
° ]IR++(0) is the Heaviside function defined by

1 ift>0
HR++(t):{o ift <0

o Ir, (gj(x)) captures discrete structures or logical conditions



| @ |o-Optimization Given observations (a', y;), consider regression problem
m
min (a1 x) i)
i=1

s.t. (|X1’0, RN ‘Xn|0) € X,

where

0 ift=0
o [tlo =Ir,([t]) = {

1 ift#0.

(a) Sparsity (b) Group sparsity (c) Hierarchy structure
>oilxilo < k [xilo = |xjlo if i,j € Gk [xilo < |xjlo 4



Chance constraint

Plgi(x, &) > 0] < Plga(x, €) > 0] = E[lr, ,(g2(x, £))]

Sample average approximation (SAA) =

1Y 1Y
N ;HR++(g1(X>£S)) N ;HR++(g2(Xa€S)) <0

Conditional expectation

E[f(X, g)HR++(g(Xa 6))]

b > E[f(x,§)lg(x,§) > 0] = Plg(x,&)]

Sample average approximation (SAA) =

1 b
5 2 (8 (806 €7) — 3 D _Tm.(8(x,€7) <0
s=1 s=1



In the rest of this talk, we present some elementary analysis
@ Closedness
o Optimality conditions

@ Reformulation via lifting



How hard is it to solve

k
min 2; fo; () Ik, ,(&0j (X))
J:

) (HSC)
s.t. x € Xusc « {X epP Z fij(X)I[R++(gU(X)) <bj, i€ [m]}

j=1



How hard is it to solve

K
Xn;]iRnn 2} foj (x)Ir, ,(80j(x))
J:

) (HSC)

st.x € Xusc Z{ x € P| Y f(x)Ir, (g(x)) < bi, i € [m]
j=1

To simplify, consider

n
Xpsc =4 x€P Za;jlleogb;, i=1,...,m
=1

e If a; > 0Vi,j, then Xasc is closed.



How hard is it to solve

K
Xrg]iRnn 2} foj (x)Ir, ,(80j(x))
J:

) (HSC)

st.x € Xusc Z{ x € P| Y f(x)Ir, (g(x)) < bi, i € [m]
j=1

To simplify, consider

n
Xpsc =4 x€P Za;jlleogb;, i=1,...,m
=1

e If a; > 0Vi,j, then Xasc is closed.
@ Xasc may NOT be a closed set in general! e.g., {x| |x1]o < |x2]0}



If we take the closure of Xasc...

@ The resulting solution can be infeasible for the original problem

@ The resulting set could be nonsense, e.g.,

c{x| |xilo < xalo} = R?



If we take the closure of Xasc...

@ The resulting solution can be infeasible for the original problem

@ The resulting set could be nonsense, e.g.,
clf{x| [xlo < [xelo} = R?

e Computing cl(Xasc) can be difficult
X=X # d(X)=[]d(X)
i=1 i=1
Example Consider X1 = {x| |x1]o < |x2|o } and X2 = {x| x2 = 0}. Then

c(X) = (X1 N Xz) = (0,0) # cl(X1) Ncl(X2) = R x {0}.



For
XASC:{X€P|A’X‘0Sb,‘, i:l,...,m},

where |x|o € R" is defined by (|x|0)i = |xi|o-

Proposition

There exists a matrix A > 0 and a {0, 1}-vector b such that

ol(Xasc) = {x € P| Alxlo < E}

@ A point z € S is called a maximal element if 2/ > z = z/ = zVZ € S.

° (/Z\, 5) merely depends on the maximal elements in the support set
{z € {0,1}"| z = [xo, x € Xasc}

o It is unclear how to compute (A, b).



Given a “stationary” solution X to

Xném" Z fOJ ]I]R++(g01 ))

(HSC)

k
st. x € Xusc T x€P [ F(x)Ir. (g5(x) < bj, i € [m]
j=1

Question: under what conditions, X is a local minimizer of (HSC)?

10



Consider a convex optimization problem
min f(x),
X

where f : R” — R is a closed convex function. A significant feature of
convex programs is

0 € 0f(x) = x € argmin f(x).
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Consider a convex optimization problem
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X

where f : R” — R is a closed convex function. A significant feature of
convex programs is

0 € 0f(x) = x € argmin f(x).

Extension
@ Quasi-convex function: every local minimizer is a global minimizer.

@ Pseudo-convex function: every stationary solution is a global
minimizer.
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Consider a convex optimization problem
min f(x),
X

where f : R” — R is a closed convex function. A significant feature of
convex programs is

0 € 0f(x) = x € argmin f(x).

Extension
@ Quasi-convex function: every local minimizer is a global minimizer.

@ Pseudo-convex function: every stationary solution is a global
minimizer.

Aim to generalize convexity in a local manner...
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Define the directional derivative function of f at X

F(Rix ) = lim F(% + t(x —tx)) (%)

A convex function f satisfies

@ Global relaxation:

f(x) > lx(x) E F(R) + f/(X;x — X) ¥x € R"

@ Touching property: f(x) = lz(X).
Then

X is a stationary solution < X € arg min l5x(x) = X € arg min f(x)
x€ERN x€ERN
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Define the directional derivative function of f at X

F(Fx—9) = lm F(%+ t(x —tx)) (%)

If the function f satisfies

@ Local relaxation:

F(x) > le(x) £ F(R) + (% x — X) Vx € BA(X) E {x] |x — x| < r}

e Touching property: f(X) = (x(X).
Then

X is a stationary solution < X € arg min {5(x) = X € arg min f(x)
Xx€B(X) xe€B(X)
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Locally convex-like functions A function f : R” — R is called (locally)
convex like at X if there exists a neighborhood B,(X) of X such that

f(x) > f(x) + f'(x; x — %), Vx € B,(X)
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Locally convex-like functions A function f : R” — R is called (locally)
convex like at X if there exists a neighborhood B,(X) of X such that

f(x) > f(x) + f'(x; x — %), Vx € B,(X)
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Examples

@ Convex functions are locally convex-like

@ Piecewise affine functions are locally convex-like
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Examples
@ Convex functions are locally convex-like
@ Piecewise affine functions are locally convex-like

@ The composition f o g o h is locally convex-like if f is isotone and
piecewise affine, g is convex, and h is piecewise affine
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Locally convex-like functions A function f : R” — R is called (locally)
convex like at X if there exists a neighborhood B,(X) of X such that

f(x) > f(X) + f'(%;x — X), Vx € B,(x)

The gap between everywhere local convex-like property and the global
convexity is Clarke regularity.

Proposition
Assume f : R” — R is locally convex-like everywhere. Then
f is Clarke regular everywhere < f is convex

16



Define the tangent cone of a given set S at X € S as

kK _ <
It} L0and {x} c Sst. v = klim x X }

—oo  tg

T(x;8) < {v eR"

Locally convex-like sets A set S is called locally convex-like at X € S if
there exists a neighborhood B,(x) such that the relaxation property holds

SNB(X)Cx+T(x;S)
o f is locally convex like at X < epi(f) is locally convex like at (X, f(X))

@ Convex sets and open sets are always locally convex like

e Cartesian product/union of finitely many locally convex sets is locally

convex

17



Unless suitable constraint qualification holds, the intersection of locally
convex sets is generally not locally convex. In particular, the level set of a
locally convex functions is not necessarily locally convex.

T

T9 = f(I—ll__— —————— -

-
-

Zy

Figure: Intersection of two locally convex sets. X; and X, consists of the red and

blue line segments, respectively; their intersection is represented by black points.
18



Optimality condition for linear optimization over S

X e€argminc' x=c'v>0, YveT(x5)
x€S

Note min{f(x)|x € S} < min{t|(x,t) € epi(f),x € S}.

Epistationary solution Point X is called an epistationary solution of
min{f(x) : x € S} if (X, f(X)) satisfies the optimality condition for the
lifted linear program over 5 = {(x, t) € epi(f) | x € S}.

Proposition

If X is an epistationary solution and $ is locally convex-like at (%, f(X)),
then X is a local minimizer of min{f(x)|x € S}.
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Back to the Heaviside composite optimization problem,

k
min 2 fo; () Ir (80 (x))
J:

) (HSC)

st. X EXysc Z={xeP Z 5(x) Ik, (gii(x)) < by, i€ [m]

To establish sufficient optimality conditions, one turns to study the local
convex-like property of the lifted set

P
Xusc £ S (1) | Y foj(x) I, (80j(x)) < t, x € Xusc
=1

which itself is HSC.

20



Recall

n
Xasc =< x€P Zaij’)ﬂOSbi,i:l,...,m
j=1

Tangent cone of Xasc
T(% Xasc) =clqveT(%P) | D ajlvilo < bi— > ay ¢,
i¢p j€s

where 3 = supp(x) £ {i| % # 0}.

Proposition

The set Xagc is locally convex like at every X € Xasc.

21



In general, the T (x; Xusc) does not admit a clean description

def
Xusc =< x € P

However, if each fj;, gj; is either convex or piecewise affine, we have

Proposition

The set Xysc is locally convex-like everywhere if the assumptions given

k

D il

Jj=1

HR++(gIJ( )) < bi? i€ [m]

by any entry of the following table is true

P Eii | convex piecewise affine
i

convex fij =0 free
piecewise affine | f; >0 free

22



Consider

n
Xasc = x€P | ajlxlo< b, i=1,....m
j=1

Lifting A non-closed set can be closed in a
lifted space by introducing additional
variables.

Example

proj{(t,x) € R% : tx > 1} = (0,0)

23



Lifting A non-closed set can be closed in an extended space of variables.
Consider

n
Xasc=4¢x€P Za,-jlleogb,-, i=1,...,m
=1

Define

n

> (af +e)s <Z a )+ b, i=1,...,
j=1
xi(l—5)=0,0<s5<1,,j=1,...,n

XASC: (Xv t757y)

Then
proj(Xasc) = Xasc
and
min{f(x)|x € Xasc} < min{f(x)|(x,t,s,y) € Xasc}.

24



Comments
@ Similar reformulation techniques are applicable to get Xusc for Xusc.

@ The lifting process is not unique and can be performed in multiple
ways.

o Lifting offers a valid solution method that leverages on existing NLP
algorithms.
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Comments
@ Similar reformulation techniques are applicable to get Xusc for Xusc.

@ The lifting process is not unique and can be performed in multiple
ways.

o Lifting offers a valid solution method that leverages on existing NLP
algorithms.

@ In the worst case, the stationary solution obtained in the lifted space
can be weak in the original space of variables.
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Graph of t =1Ig, (x) of t = I, (x) in lifted space
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Graph of t =1Ig, (x) of t = I, (x) in lifted space
t t
.... '-“\
— o
e
X
Px
s
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Graph of t =1Ig, (x) of t = I, (x) in lifted space

Proposition (Informal)

If (x,t,¥,35) is an epistationary solution of f on Xusc, then X is a
pseudostationary solution of f on Xpggc. Under more restrictive
conditions, X is an epistationary solution of f on Xgsc.
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Summary

@ Heaviside composite optimization can lack lower semicontinuity and is
challenging to solve

@ Locally convex-like property + epi-stationarity = local optimality

@ Possibility of solving Heaviside via existing NLP solution methods in a
lifted space
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Summary

@ Heaviside composite optimization can lack lower semicontinuity and is
challenging to solve

@ Locally convex-like property + epi-stationarity = local optimality

@ Possibility of solving Heaviside via existing NLP solution methods in a
lifted space

Thanks for your listening!
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