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Introduction

We consider

min
x ,z

1

2
x⊤Qx + d⊤x + c⊤z

s.t. xi (1− zi ) = 0 ∀i ∈ [n]

z ∈ Z ⊆ {0, 1}n,

(MIQP)

where

Q ⪰ 0 is PSD

zi = Ixi ̸=0 is the “support” of xi

Z capture logical conditions - cardinality, disjunction, conjunction,
implication
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Motivation Application – Monitoring Problem

Monitoring Problem Assume at each time stamp i , a datapoint yi is
generated by a sensor system. Using the most recent observations {yi}ni=1

at each time stamp, one aims to infer the true value of time series
process {xi}ni=1 to detect changes or anomalies.

Time

Applications

Manufacturing system Yan et al. (2017)

Personalized medicine Dunn et al. (2018)
4
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Motivation Application – Monitoring Problem

At each time stamp, the monitoring problem can be modeled as

min
x ,z∈Rn

1

2

n∑

i=1

(xi − yi )
2

︸ ︷︷ ︸
fitness

+
1

2
x⊤Rx
︸ ︷︷ ︸
regularizer

+µ∥x∥0︸ ︷︷ ︸
sparsity

s.t. xi (1− zi ) = 0, zi ∈ {0, 1} ∀i = 1, . . . , n

where Q = I + R, c = µ1, d = −y ,

Commonly used regularizer

Moving average: x⊤Rx = λ
∑

i

(
xi − 1

k

∑k
j=1 xi−j

)2
(bandwidth k)

Ridge: x⊤Rx = λ∥x∥22 (bandwidth k=0)

Hodrick-Prescott: x⊤Rx = λ
∑

i (xi−2 − 2xi−1 + xi )
2 (bandwidth

k = 2)

k-order differences (bandwidth k) 5
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Goal

How hard is the problem?

min
x ,z

1

2
x⊤Qx + d⊤x + c⊤z

s.t. xi (1− zi ) = 0 ∀i ∈ [n]

z ∈ Z ⊆ {0, 1}n

NP-hard in general, e.g., OLS, Q = I + Rank-one
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s.t. xi (1− zi ) = 0 ∀i ∈ [n]

z ∈ Z ⊆ {0, 1}n

NP-hard in general, e.g., OLS, Q = I + Rank-one

In online settings:

MIP solvers? Assume 1000 time stamps and utilizing the most recent
200 observations to make inference ⇒ around 1000 MIQPs each with
200 binary vars!
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Historical Origin

Decision diagrams encode Boolean functions

Lee (1959), Akers (1978), Bryant (1986)

Historically used for circuit design and verification

Example
f (x) = (¬x1 ∧¬x2 ∧¬x3)∨(x1 ∧ x2)∨(x2 ∧ x3)

x1 x2 x3 f (x)

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

x1

x2

0

x2

1

x3

0

x3

1

1

1

0

0

01 10
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Decision Diagram for Binary Linear Optimization

Using DD to solve binary linear optimization problems was pioneered by
CMU scholars

min f (z)
def
= c⊤z

s.t. z ∈ Z ⊆ {0, 1}n

8



Decision Diagram for Binary Linear Optimization

To illustrate, consider a knapsack problem

max
z∈{0,1}4

8z1 + 14z2 + 7z3 + 6z4

s.t. 3z1 + 6z2 + 3z3 + 4z4 ≤ 6

Arc ⇔ assigment of zi

Each node ⇔ a state:
total weights of the
selected items

r

0 3

0 6 3

0 3

36 36

0 4 6 3

t

8

0

7

0

0

:0

:1
z1

z2

z3

z4
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Decision Diagram for Binary Linear Optimization

To illustrate, consider a knapsack problem

max
z∈{0,1}4

8z1 + 14z2 + 7z3 + 6z4

s.t. 3z1 + 6z2 + 3z3 + 4z4 ≤ 6

Arc length = obj coef

Path length = obj of a
feasible sol

Binary program ⇔
shortest/longest path
problem for an acyclic
directed graph

r

0 3

0 6 3

0 336 36

0 4 6 3

t

8

0

7

0

0

:0

:1
z1

z2

z3

z4

9



Decision Diagram for Binary Linear Optimization

More Comments

Decision diagram is one way to express dynamic programming

state space {sℓ}
transition function ϕ(sℓ, ẑℓ)
cost function/arc length ℓa

Decision diagram is an effective tool to explore comninatorial
structures

The 0-1 inequality

300z0 + 300z1 + 285z2 + 285z3 + 265z4 + 265z5 + 230z6+

230z7 + 190z8 + 200z9 + 400z10 + 200z11 + 400z12 + 200z13

+400z14 + 200z15 + 400z16 + 200z17 + 400z18 ≤ 2700

has 117,520 minimal feasible solutions (or minimal covers). But its
reduced BDD has only 152 nodes. . .

Relaxed/restricted DD, variable ordering, etc...
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DD Construction for MIQP

We first assume Z = {0, 1}n

min
x ,z

1

2
x⊤Qx + d⊤x + c⊤z

s.t. xi (1− zi ) = 0 ∀i ∈ [n]

z ∈ {0, 1}n
(MIQP)

Question: how to construct a decision diagram for problems involving
continuous variables and nonseparable objectives?
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DD Construction for MIQP

Observation For a fixed support z ∈ {0, 1}n, denote S = {i : zi = 1}.
Then

g(z) ≜ min
x :x◦(1−z)=0

1

2
x⊤Qx+d⊤x = −1

2
d⊤
S Q−1

SS dS = −1

2
⟨(Q ◦zz⊤)†, d⊤d⟩,

where
[
(Q ◦ zz⊤)†

]
ij
=
[
Q−1

SS

]
ij
if i , j ∈ S and 0 otherwise.

State Space Assume vℓ is one node at layer ℓ corresponding to the partial
solution zℓ ∈ {0, 1}ℓ−1. Define the state of vℓ as

svℓ =

[
Q ◦ ẑℓ

(
ẑℓ
)⊤]†

,

where ẑℓ ∈ Rn is defined by ẑℓi = zℓi if i ≤ ℓ− 1 and 0 otherwise.
Transition Function svℓ+1

− svℓ can be computed using rank-one updates
Arc Length ℓvℓvℓ+1

= g(ẑℓ+1)− g(ẑℓ) + cℓẑ
ℓ
ℓ which is linear in dd⊤

Remark: The architecture of DD does not depend on d ⇒ only need to
construct DD once in the online setting
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
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
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

0
1
1


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S = {2, 3}

Q−1
SS =

(
3 −1
−1 2

)−1

=

(
2/5 1/5
1/5 3/5

)
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

0 0 0
0 2/5 1/5
0 1/5 3/5



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ẑℓ
)⊤]†

,
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where ẑℓ ∈ Rn is defined by ẑℓi = zℓi if i ≤ ℓ− 1 and 0 otherwise.
Transition Function svℓ+1

− svℓ can be computed using rank-one updates
Arc Length ℓvℓvℓ+1
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Illustrating Example

Example Consider Q =




2 −1 −1
−1 3 −1
−1 −1 2


. Then the decision diagram is

Author: Real-time quadratic optimization with banded matrices and indicators
12 Article submitted to Operations Research; manuscript no. -

To simplify the notation, given any arc a ∈A, we will use νa and ua instead of ν(a) and u(a).

We will also refer to νa and ua as the value assignment and transition vector stored in arc a of the

diagram, respectively.

Example 2. Consider problem (12) with matrix Q given by




2 −1 −1
−1 3 −1
−1 −1 2


 . Figure 3(a) shows

the state transition graph obtained by applying function ϕfull recursively, and Figure 3(b) depicts

the transition vectors stored in the arcs of the diagram. ■

zi = 0

zi = 1



0 0 0
0 0 0
0 0 0






0 0 0
0 0 0
0 0 0






1/2 0 0
0 0 0
0 0 0






0 0 0
0 0 0
0 0 0






0 0 0
0 1/3 0
0 0 0






1/2 0 0
0 0 0
0 0 0






3/5 1/5 0
1/5 2/5 0
0 0 0






0 0 0
0 0 0
0 0 0






0 0 0
0 0 0
0 0 1/2






0 0 0
0 1/3 0
0 0 0





0 0 0
0 2/5 1/5
0 1/5 3/5





1/2 0 0
0 0 0
0 0 0





2/3 0 1/3
0 0 0

1/3 0 2/3






3/5 1/5 0
1/5 2/5 0
0 0 0





5/3 1 4/3
1 1 1

4/3 1 5/3




z1

z2

z3

(a)

n

n n

n n n n

n n n n n n n n



√
2/2
0
0







0√
3/3
0







√
5/5√
10/5
0







0
0√
2/2







0√
15/15√
15/5






√
6/6
0√
6/6






5
√
3/15√
15/5√
15/3




(b)

Figure 3 State transition graph (a) and transition vectors (b) generated for Example 2.

Before formally proving the key properties of the decision diagram generated (Proposition 1),

we state in Remarks 1-3 below some useful observations concerning states and transition vectors.

Remark 1. Departing from standard practices, Dfull does not have associated arc lengths. Indeed,

to allow for real-time execution, the diagram is constructed without observing the linear coefficients

A second thought: we are doing enumeration... Can we improve?
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One observation

Consider Q =



5 −1 0 0 0 0 0
−1 5 −1 0 0 0 0
0 −1 5 −1 0 0 0
0 0 −1 5 −1 0 0
0 0 0 −1 5 −1 0
0 0 0 0 −1 5 ∗
0 0 0 0 0 ∗ ∗


7×7

, z̄ℓ =



1
1
1
1
1
1
0


and ẑℓ =



0
1
1
1
1
1
0


.

Then

A =

 ⋆
0.00 0.00008 0
0.00 0.00040 0
0.01 0.00190 0
0.05 0.00909 0
0.22 0.04356 0
0.04 0.20871 0
0 0 0


7×7

, B =

 ⋆
0 0 0

0.00 0.00038 0
0.01 0.00189 0
0.05 0.00909 0
0.22 0.04356 0
0.04 0.20871 0
0 0 0


7×7

,

where ⋆ is the submatrix unrelated to the transition/cost function, A =
(
Q ◦ z̄ℓ(z̄ℓ)⊤

)†
,

B =
(
Q ◦ ẑℓ(ẑℓ)⊤

)†
.

Observation: max
i,j essential

|Aij − Bij | < 8× 10−5 def
= ϵ, i.e., the two states are essentially

indistinguishable up to numerical precision ϵ ⇒ ϵ-exact decision diagram
14



ϵ-exact Decision Diagrams

Definition An ϵ-exact decision diagram is any decision diagram produced
layer by layer according to the original construction rule and then merging
those ϵ-indistinguishable states.

A Fully Polynomial Time Approximation Scheme (FPTAS)

Theorem (Informal)

Given a matrix with bandwidth k, with a proper merging rule, one can
construct a decision diagram Dapprox such that

# of arcs in DD ≤ c1n

(∥d∥2∞n

ϵ

)c2

,

where c1 and c2 only depend on k and the condition number of Q;

ϵ is the optimality gap.

Remark. In practical implementation, taking ϵ = 10−5 is sufficient to
obtain exact optimal solutions within machine precision.
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More constraints...

What if we have more constraints over (x , z)?

min
x ,z

1

2
x⊤Qx + d⊤x + c⊤z

s.t. xi (1− zi ) = 0 ∀i ∈ [n]

z ∈ Z

,

x ∈ P

(MIQP)

How to exploit the small-bandwidth structure of Q in solving (MIQP)?

⇒ Convexification
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More constraints...

What if we have more constraints over (x , z)?

If Z /∈ {0, 1}n, delete nodes due to infeasibility in DD

min
x ,z

1

2
x⊤Qx + d⊤x + c⊤z

s.t. xi (1− zi ) = 0 ∀i ∈ [n]

z ∈ Z ,

x ∈ P

(MIQP)

E.g. Z = {z ∈ {0, 1}n :
∑n

i=1 zi ≤ k}
The number of nodes is reduced ⇒ ϵ-exact DD remains a FPTAS

How to exploit the small-bandwidth structure of Q in solving (MIQP)?

⇒ Convexification
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More constraints...

What if we have more constraints over (x , z)?

If Z /∈ {0, 1}n and P /∈ Rn,
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⇒ we cannot expect the same complexity anymore
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Role of Convexification in MIP

Recipe for solving a general mixed-integer program (MIP)

solving a MIP ⇔ enumeration + convexification
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Role of Convexification in MIP

Recipe for solving a general mixed-integer program (MIP)

solving a MIP ⇔ enumeration + convexification

Convexification In mixed-integer linear optimization, convexification refers
to various kinds of cutting planes

Gomory cuts (1950s)

Mixed-integer rounding cuts

Flow cover cuts

...

Over 70-year development

Fractional Solution

Cut

Feasible Solutions

17



Role of Convexification in MIP

Recipe for solving a general mixed-integer program (MIP)

solving a MIP ⇔ enumeration + convexification

Convexification In mixed-integer nonlinear optimization, cutting planes
could be ineffective

Need infinite number of linear cuts
to ensure feasibility

Study the convex hull of structured
mixed-integer nonlinear sets

Need new convexification techniques

Cut
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Epigraphical reformulation

Get back.... Note that

min
x ,z

1

2
x⊤Qx + d⊤x + c⊤z

s.t. xi (1− zi ) = 0 ∀i ∈ [n]

z ∈ Z , x ∈ P

(MIQP)

is equivalent to

min
x ,z

t + d⊤x + c⊤z

s.t. t ≥ 1

2
x⊤Qx

xi (1− zi ) = 0, zi ∈ {0, 1} ∀i ∈ [n]

z ∈ Z

x ∈ P

Replace XQ,Z with conv(XQ,Z ) ⇒ a strong convex relaxation

XQ,Z doesn’t involve d ⇒ only need to compute conv(XQ,Z ) once
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Convexification

Define

XQ,Z ≜
{
(t, x , z) ∈ Rn × R× Z : t ≥ x⊤Qx , xi (1− zi ) = 0 ∀i

}
.

With a DD at hand, one can show

Theorem (Convex Hull Description)

Point (t, x , z) ∈ conv(XQ,Z ) iff the followig SOCP-r system is consistent

x0 ≥
∑

a∈A

w2
a

ra
, x =

∑

a∈A

uawa, z =
∑

a∈A:νa=1

eℓ(a)ra, r ∈ P

where

P =




r :

r ≥ 0,
∑

a∈A:ℓ(a)=1

ra = 1,
∑

a∈A:ℓ(a)=n

ra = 1,

∑

a∈A:ha=v

ra =
∑

a∈A:ta=v

ra ∀v ∈ N : ℓ(v) ≤ n





is the path polytope associated with the decision diagram.
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Computational Results in Offline Settings
Author: Real-time quadratic optimization with banded matrices and indicators

32 Article submitted to Operations Research; manuscript no. -

𝜇 = 0.050𝜇 = 0.020𝜇 = 0.010𝜇 = 0.001 𝜇 = 0.005

Figure 6 Distribution of runtimes of Mosek (red) vs Decision diagram (blue) for n = 200 as a function of the

sparsity parameter µ. Each boxplot represents an average over 5 different signals y with n = 200,

k ∈ {2,3} and λ∈ {0.25,0.50,1.0,2.00,5.00}.

values of sparsity parameter µ. In particular, the computations corresponding to each row mimic

a cross-validation procedure to select the best sparsity parameter.

Since the averages in each row are taken over parameters concerning the linear coefficients of the

objective, which do not influence the construction of the decision diagram, the ensuing diagram

is the same for all instances. In particular, during cross-validation, the decision diagram needs to

be constructed only once and then can be reused with minimal cost. In contrast, to solve these

instances with Mosek, repeated calls to a branch-and-bound solver need to done, with limited

potential for reoptimization. We also observe that, as expected, decision diagrams are substantially

more effective for smaller values of the regularization parameter λ (leading to better condition

matrices) and width parameter k. As observed previously, decision diagrams are also more effective

for heavily constrained instances with larger values of parameter τ .

One of the main advantages of decision diagram approaches is the capabilities of reoptimization,

as shown in Table 3 and, later, with computations in the online setting in §6.4. Nonetheless, we

emphasize that they can improve upon off-the-shelf solvers even in the context of a single instance.

Figure 7 depicts the time required to solve each individual instance with n = 200 from scratch

using either Mosek or via decision diagrams. We see that even in unconstrained instances, where

decision diagrams are less effective, the method is competitive with Mosek: Indeed, while Mosek

is able to solve some instances (with large values of µ) almost instantly, it also hits time limits in

several instances. Decision diagrams, on the other hand, are able to solve all instances consistently,

and are competitive with the off-the-shelf solver. In constrained instances with τ ∈ {5,10}, using
decision diagrams clearly results in better performance, solving all instances to optimality within

300 seconds, and faster than Mosek in most cases.
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Computational Results in Online Settings

Author: Real-time quadratic optimization with banded matrices and indicators
34 Article submitted to Operations Research; manuscript no. -
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(b) Instances with contiguity constraints: τ ∈ {5,10}
Figure 7 Plots comparison solution times of all instances with n= 200. Each dot corresponds to an instance, with

the horizontal coordinate representing the time used by Mosek and the vertical coordinate corresponding

to the time used by the decision diagram method.

decision diagram |A| and the setup time time dd (corresponding exactly to the offline setting),

the average time per instance time sp and the total time time total required to solve all 6,823

instances online (not including setup time). All times reported are in seconds. The results are also

summarized in Figure 1 in the introduction.

Table 3 Online instances, each one requiring the sequential solution of 6,823 MIOs (31) with n= 200

(corresponding, for each point, to the most recent 200 observations).

k λ
Setup time Online time

|A| time dd (s) time sp(s) time total(s)

2

0.25 10,965 7 0.001 7
0.5 16,749 11 0.002 11
1.0 30,963 24 0.004 30
2.0 51,923 32 0.006 43
5.0 88,491 62 0.013 88

3

0.25 56,789 40 0.007 48
0.5 107,591 81 0.016 107
1.0 233,917 184 0.035 239
2.0 478,889 409 0.079 539
5.0 963,643 864 0.185 1,261

Decision diagrams are able to solve the problems in milliseconds. In instances with k = 2 and

λ small, the solution times per instance can be as small as one millisecond per instance. Even in
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Take Home Message

Summary

Develop a real-time solution method for solving MIQPs with small
bandwidth using decision diagrams

Construct approximate DDs whose size is polynomial in the number

of decision variables and
1

OPT GAP
⇒ FPTAS

Establish the convex hull results for the mixed-integer epigraph using
constructed DD

Amazing performance in practice!

Our paper is available at: https://arxiv.org/pdf/2405.03051

Thanks for your listening!
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