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@ Introduction



We consider
rylzn %XT Qx+d'x+c'z
st. xi(1—2z)=0 Vie]n| (MIQP)
ze Z C{0,1}",
where
e Q>=0isPSD

@ zj = I, is the “support” of x;

@ Z capture logical conditions - cardinality, disjunction, conjunction,
implication
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Monitoring Problem Assume at each time stamp /, a datapoint y; is
generated by a sensor system. Using the most recent observations {y;} ;
at each time stamp, one aims to infer the true value of time series
process {x;}"_; to detect changes or anomalies.

Applications
e Manufacturing system Yan et al. (2017)
o Personalized medicine Dunn et al. (2018)
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At each time stamp, the monitoring problem can be modeled as

1L , 1t
min, 5> (=il 4 5x R+ plxllg
=1 sparsity

- regularizer
fitness

where Q=1+ R, c=upl, d=—y,
Commonly used regularizer
2

@ Moving average: x'Rx =AY, (x,- — 1 Jlle x,-_j> (bandwidth k)

o Ridge: x' Rx = \||x||? (bandwidth k=0)

@ Hodrick-Prescott: x"Rx = A >oilxico —2xi-1 + xi)? (bandwidth

k =2)
o k-order differences (bandwidth k) 5



At each time stamp, the monitoring problem can be modeled as
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At each time stamp, the monitoring problem can be modeled as

n n
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x,z€R"
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regularizer =~

fitness sparsity

st. xi(1—2z)=0, z€{0,1} Vi=1,...,n

where Q=1+ R, c=pl,d=-y, Z={0,1}"
Commonly used regularizer
@ Moving average: x'Rx =AY, (x,- —1 Jlle x,-_j>2 (bandwidth k)
o Ridge: x" Rx = \||x||3 (bandwidth k=0)
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@ k-order differences (bandwidth k) 5



How hard is the problem?

1
min EXTQX +d'x+c'z

st. xi(l—2z)=0 Vie][n]
ze ZC{0,1}"

@ N'P-hard in general, e.g., OLS, Q = | + Rank-one
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@ N'P-hard in general, e.g., OLS, Q = | + Rank-one

In online settings:

@ MIP solvers? Assume 1000 time stamps and utilizing the most recent
200 observations to make inference = around 1000 MIQPs each with
200 binary vars!
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Goal: get a real-time solution to (MIQP) in online settings (that is, data
d is revealed at each time stamp)



How hard is the problem?

1
min §XTQX +d'x+c'z

s.t. X,'(]. — Z,') =0 Vie [n]
zezcC{0,1)"

@ N'P-hard in general, e.g., OLS, Q = | + Rank-one

Goal: get a real-time solution to (MIQP) in online settings (that is, data
d is revealed at each time stamp)

Assumption: Q has a small bandwidth k , i.e.,, Q; =0if |i — j| > k



© Decision Diagram Basics



Decision diagrams encode Boolean functions
o Lee (1959), Akers (1978), Bryant (1986)
@ Historically used for circuit design and verification

Example
f(X) = (—|X1 A =X N\ —|X3) \/(X]_ /\Xz) \/(X2 /\X3)

X1 X2 X3 f(X )
0 0 O 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 O 0
1 0 1 0
1 1 0 1
1 1 1 1




Using DD to solve binary linear optimization problems was pioneered by
CMU scholars

min f(z) = ¢’z

st.ze ZC{0,1}"

David Bergman

Andre A. Cire
~ Willem-Jan van Hoeve
I | John Hooker

Decision

Dlagrams for




To illustrate, consider a knapsack problem

max 8z; + 14z, + 723 + 624
ze{0,1}4

st. 32y +6z2+3z3+42,. <6

.’ ---2>0
z .
v’ —:1
@ Arc < assigment of z; 0 3
¥)
@ Each node < a state:
total weights of the
z3

selected items
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To illustrate, consider a knapsack problem

max 8z; + 14z, + 723 + 624
ze{0,1}4

st. 32y +6z2+3z3+42,. <6

5 ---2:0
. z] Re 8
@ Arc length = obj coef v’ \ —:1
@ Path length = obj of a 2 ’/0\, 0,'3
feasible sol Ok, . 3\1
@ Binary program < 3 ) ;)
shortest/longest path 0\5 b 3
problem for an acyclic Z ,'l 0 I
directed graph O\i 4 é# 3*



More Comments

@ Decision diagram is one way to express dynamic programming

o state space {s}
e transition function ¢(s, 2¢)
e cost function/arc length £,

@ Decision diagram is an effective tool to explore comninatorial
structures
The 0-1 inequality

300z + 300z, + 2852, + 28523 + 26524 + 26525 + 23025+
230z7 + 190zg + 200z9 + 400239 + 200211 + 400212 4 200213
+400z14 + 200215 + 400216 + 200217 + 400218 < 2700

has 117,520 minimal feasible solutions (or minimal covers). But its
reduced BDD has only 152 nodes. . .

@ Relaxed/restricted DD, variable ordering, etc...

10



© Decision Diagrams for MIQP

10



We first assume Z = {0,1}"

min %XTQX +d'x+c'z
st x(l—z)=0 Vieln] (MIQP)
ze{0,1}"

Question: how to construct a decision diagram for problems involving
continuous variables and nonseparable objectives?

11



Observation For a fixed support z € {0,1}", denote S = {i : z; = 1}.
Then

1 1 1
g(z)=  min EXTQX—FdTX = —Ed;—Qs_slds = —§<(QozzT)T, d'd),

x:xo(1—z)=0

where [(Qozz")], = [Qss],; if i,j € S and O otherwise.

12



Observation For a fixed support z € {0,1}", denote S = {i : z; = 1}.
Then

1 1 1
g(z) 2 x:xo?l]i—nz):O EXTQX—l-dTX = —EdSTQS_Slds = —§<(QozzT)T, d'd),

where [(Q o zzT)T]’.j = [QS_SI]U if i,j € S and 0 otherwise.

2 -1 -1 0
Example Consider @ = | -1 3 —1]andz=|1]. Then
-1 -1 2 1

.5_:1{:2,3}3 B _1: 25 15
° Qgs (_1 2) (1/5 3/5>

0 0 0
o (Qozz")t = (o 2/5 1/5)
0 1/5 3/5

12
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. 1 1 _ 1
g(z) = X_onrln_nz)zo EXTQX—FdTX = —Ed;—stlds = —§<(QozzT)T, d'd),
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State Space Assume v; is one node at layer £ corresponding to the partial

solution z* € {0,1}*~1. Define the state of v, as

Sy, = [(()02Z (2Z>T]Ta

where 2! € R" is defined by ff = zf if i </ —1 and 0 otherwise.
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Arc Length ¢ = g(2T1) — g(2°) + 2} which is linear in dd "

VeVet1
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Observation For a fixed support z € {0,1}", denote S = {i : z; = 1}.
Then

1 1 1

g(z)2  min x"TQx+d'x= ——d;—Qgslds = —2((Qozz"),d"d),
x:xo(1—z)=0 2 2 2

where [(Qozz")], = [Qss], if i,j € S and O otherwise.

State Space Assume v; is one node at layer £ corresponding to the partial

solution z* € {0,1}*~1. Define the state of v, as

Sy, = [(()02Z (2Z>T]T,

where 2! € R" is defined by ff = zf if i </ —1 and 0 otherwise.
Transition Function s,,,, — s, can be computed using rank-one updates
Arc Length 4y,y,,, = g(2/t1) — g(2°) + c¢2f which is linear in dd ™
Remark: The architecture of DD does not depend on d = only need to

construct DD once in the online setting
12



) . Then the decision diagram is

-1
-1
2

-1
3
-1

2
-1
-1

|
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2 -1 -1
Example Consider @ = | —1 3 —1|. Then the decision diagram is
-1 -1 2
(0 0 o)
000
000
Z1 \.,/ \1 Zi = 1
(88 (l{{" 0 8) LAzl
00 0 00

(3/5 1/5 o)
1/52/5 0
0 00
z3

\

0
0
0
Z .
2 ® \ \ \
0
0
)
N\

\

2/3 0 1/3) (3/5 1/5 o) (5/3 1 4/3)
000 1/5 111
1/3 0 2/3 0 0 4/315/3

A second thought: we are doing enumeration...
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2 -1 -1
Example Consider @ = | —1 3 —1|. Then the decision diagram is
-1 -1 2
(0 0 o)
000
000
Z1 \.,/ \1 Zi = 1
(8 00 (l{f 0 8) LAzl
000 0 00
Z2 /’/ L

(3/5 1/5 o)
1/52/5 0
0 00
z3

\

2/3 0 1/3) (3/5 1/5 0) (5/3 1 4/3)
000 1/52/50|( 1 1 1
1/3 0 2/3 0 0 0/\4/315/3

N————
/N

A second thought: we are doing enumeration... Can we improve?

13



Consider Q =
Then
a-| %

0.00
0.00
0.01
0.05
0.22
0.04
0

0.00008

0.00040

0.00190

0.00909

0.04356

0.20871
0

[eNelNoNeNoNoNe]

X7

0
0.00
0.01
0.05
0.22
0.04

0

1
1
1
1
1
1
0

0
0.00038
0.00189
0.00909
0.04356
0.20871

0

and 2¢ =

[eNolNoNeNoNoNe]

O R H FH M= = O

X7

where * is the submatrix unrelated to the transition/cost function, A= (Q o El(Ee)T)T,

B=(Qoz(4H")".

Observation:

maXx
i,j essential

|Aj — Bj| < 8x 10~

5 def

indistinguishable up to numerical precision € = e-exact decision diagram

€, i.e., the two states are essentially

14



Definition An e-exact decision diagram is any decision diagram produced
layer by layer according to the original construction rule and then merging
those e-indistinguishable states.

15



Definition An e-exact decision diagram is any decision diagram produced

layer by layer according to the original construction rule and then merging
those e-indistinguishable states.
A Fully Polynomial Time Approximation Scheme (FPTAS)

Theorem (Informal)

Given a matrix with bandwidth k, with a proper merging rule, one can
construct a decision diagram D approx Such that

d|I? (]
# of arcs in DD < cin (M) ,
€
@ where c¢; and ¢ only depend on k and the condition number of Q;

@ c is the optimality gap.

15



Definition An e-exact decision diagram is any decision diagram produced

layer by layer according to the original construction rule and then merging
those e-indistinguishable states.
A Fully Polynomial Time Approximation Scheme (FPTAS)

Theorem (Informal)

Given a matrix with bandwidth k, with a proper merging rule, one can
construct a decision diagram D approx Such that

2 (]
# of arcs in DD < cin (M) ,
€

@ where c1 and ¢ only depend on k and the condition number of Q;

@ c is the optimality gap.

Remark. In practical implementation, taking € = 107 is sufficient to

obtain exact optimal solutions within machine precision.
15



@ Convexification

15



What if we have more constraints over (x, z)?
1
min =x'Qx+d ' x+c'z
X,z 2

st. xi(l—z)=0 Vie]n (MIQP)

)

16



What if we have more constraints over (x, z)?
If Z ¢ {0,1}", delete nodes due to infeasibility in DD
min %XTQX +d'x+c'z
st x(l—z)=0 Vieln] (MIQP)
ze/Z,

o Eg Z={ze{0,1}":3" 7 <k}
The number of nodes is reduced = e-exact DD remains a FPTAS

16



What if we have more constraints over (x, z)?
If Z¢ {0,1}" and P ¢ R",
min %XTQX +d'x+c'z
st. xi(1—2z)=0 Vie]n| (MIQP)
zeZ, xeP

@ This will destroy the exact small-bandwidth structure
=- we cannot expect the same complexity anymore
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How to exploit the small-bandwidth structure of Q in solving (MIQP)?
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What if we have more constraints over (x, z)?

If Z ¢ {0,1}" and P ¢ R",

1
min EXTQX +d'x+c'z

st. xi(1—2z)=0 Vie]n| (MIQP)
zeZ, xeP

@ This will destroy the exact small-bandwidth structure
=- we cannot expect the same complexity anymore
How to exploit the small-bandwidth structure of Q in solving (MIQP)?

= Convexification

16



Recipe for solving a general mixed-integer program (MIP)
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17



Recipe for solving a general mixed-integer program (MIP)

|so|ving a MIP < enumeration + convexification |

Enumeration Branch & bound algorithm
1

@ Solve a convex relaxation / \
2 3
at each node of the tree
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Recipe for solving a general mixed-integer program (MIP)

|so|ving a MIP < enumeration + convexification |

Enumeration Branch & bound algorithm

@ Solve a convex relaxation
at each node of the tree

@ Branch on variables with
fractional value

@ Prune by integrality,
infeasibility and bounds

\
ntira/\ o
"

LAY

;/ ,  fathomed by bound

/ \
’ \
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Recipe for solving a general mixed-integer program (MIP)

|so|ving a MIP < enumeration + convexification |

Enumeration Branch & bound algorithm

1
@ Solve a convex relaxation / \3
at each node of the tree integral/
@ Branch on variables with 4 \ feasibl
fractional value / inteasible
@ Prune by integrality,
infeasibility and bounds ,', ‘\\ fathomed by bound

/ \
’ \

@ Constructing strong convex relaxations is an art!

17



Recipe for solving a general mixed-integer program (MIP)

solving a MIP < enumeration + convexification |

Convexification In mixed-integer linear optimization, convexification refers
to various kinds of cutting planes RS

e Gomory cuts (1950s)

(e}

@ Mixed-integer rounding cuts
Fractional Solution

@ Flow cover cuts

Over 70-year development

17



Recipe for solving a general mixed-integer program (MIP)

|so|ving a MIP < enumeration + convexification |

Convexification In mixed-integer nonlinear optimization, cutting planes
could be ineffective

T2
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Recipe for solving a general mixed-integer program (MIP)

solving a MIP < enumeration + convexification |

Convexification In mixed-integer nonlinear optimization, cutting planes
could be ineffective

@ Need infinite number of linear cuts
to ensure feasibility
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|so|ving a MIP < enumeration + convexification |

Convexification In mixed-integer nonlinear optimization, cutting planes
could be ineffective

@ Need infinite number of linear cuts
to ensure feasibility

@ Study the convex hull of structured
mixed-integer nonlinear sets
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Recipe for solving a general mixed-integer program (MIP)

|so|ving a MIP < enumeration + convexification |

Convexification In mixed-integer nonlinear optimization, cutting planes
could be ineffective
T
@ Need infinite number of linear cuts
to ensure feasibility

@ Study the convex hull of structured
mixed-integer nonlinear sets

@ Need new convexification techniques

/

/!

17



Get back.... Note that

min leQx +d'x+c'z
x,z 2

st. xi(1—z)=0 Viée[n] (MIQP)

zeZ, xeP
is equivalent to

mnt+d x+c'z

1
st. t> EXTQX
X,'(]. — Z,') =0,z € {0, 1} Vi e [n]
ze”Z
xeP

18



Get back.... Note that

min leQx +d'x+c'z
x,z 2

st. xi(1—2z)=0 Vie]n| (MIQP)
zeZ, xeP
is equivalent to

mint+d x+c'z

X,z )

s.t.tZEX'Qx ot 5
x(1-z)=0,ze{0,1} Vieln | &
ze”Z

xeP

18



Get back.... Note that

is equivalent to

min leQx +d'x+c'z
x,z 2

st. xi(1—2z)=0 Vie]n|
zeZ, xeP

mnt+d x+c'z

X,z

s.t.

1
t > %x'Qx

X,'(]. —Z,') =0,z € {0,1} Vi e [n]
ze”Z

xeP

(MIQP)

def

= Xq.z

@ Replace Xq 7z with conv(Xg z) = a strong convex relaxation
@ Xg,z doesn't involve d = only need to compute conv(Xg,z) once

18



Define
Xo.z 2 {(t,x,z) ER"XRxZ:t>x'Qx, xi(l—z)= OVi}.

With a DD at hand, one can show

Theorem (Convex Hull Description)

Point (t,x, z) € conv(Xq,z) iff the followig SOCP-r system is consistent

2
w,
xozzr—:, x:Zuawa, z= Z € (a)fay r € P

acA acA acA:v,=1
where
r >0, Z ra=1, Z ra=1,
. acA:4(a)=1 acA:l(a)=n
Z r, = Z Vv eN:£L(v)<n
acA:h,=v acA:t,=v

is the path polytope associated with the decision diagram.

19



e Computational Experiments
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NS

1 =0.001

==

1 =0.005

Distribution of runtimes of Mosek (red) vs

sparsity parameter p. Each boxplot represents an average over 5 different signals y with n

k€{2,3} and X € {0.25,0.50, 1.0, 2.00,5.00}.

O T &

n=0.010 n=0.020 u=0.050

Decision diagram (blue) for n =200 as a function



Online instances, each one requiring the sequential solution of 6,823 MIOs (31) with n =200

(corresponding, for each point, to the most recent 200 observations).

kA Setup time Online time
|A| time_dd (s)|time_sp(s) time_total(s)

0.25] 10,965 7 0.001 7
0.5 | 16,749 11 0.002 11

2 1.0 | 30,963 24 0.004 30
2.0 ] 51,923 32 0.006 43
5.0 | 88,491 62 0.013 88
0.25| 56,789 40 0.007 48
0.5 {107,591 81 0.016 107

3 1.0(233,917 184 0.035 239
2.0 478,889 409 0.079 539
5.0 1963,643 864 0.185 1,261
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Summary

@ Develop a real-time solution method for solving MIQPs with small
bandwidth using decision diagrams
@ Construct approximate DDs whose size is polynomial in the number

.. ) 1
of decision variables and OPT CAP = FPTAS

@ Establish the convex hull results for the mixed-integer epigraph using
constructed DD

@ Amazing performance in practice!

22


https://arxiv.org/pdf/2405.03051

Summary

@ Develop a real-time solution method for solving MIQPs with small
bandwidth using decision diagrams

@ Construct approximate DDs whose size is polynomial in the number
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of decision variables and OPT CAP = FPTAS
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constructed DD

@ Amazing performance in practice!

Our paper is available at: https://arxiv.org/pdf/2405.03051

Thanks for your listening!
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