

Real-Time Solution of Mixed-Integer Quadratic Programs Using Decision Diagrams

Shaoning Han

Department of Mathematics
National University of Singapore

NUSRI Workshop
December 2025

Collaborators

Andres Gomez
ISE, USC

Leonardo Lozano
OBAIS, U of Cincinnati

Agenda

- 1 Introduction
- 2 Decision Diagram Basics
- 3 Decision Diagrams for MIQP
- 4 Convexification
- 5 Computational Experiments

Introduction

We consider

$$\begin{aligned} & \min_{x,z} \frac{1}{2} x^\top Q x + d^\top x + c^\top z \\ & \text{s.t. } x_i(1 - z_i) = 0 \quad \forall i \in [n] \\ & \quad z \in Z \subseteq \{0, 1\}^n, \end{aligned} \tag{MIQP}$$

where

- $Q \succeq 0$ is PSD
- $z_i = \mathbb{I}_{x_i \neq 0}$ is the “support” of x_i
- Z capture logical conditions - cardinality, disjunction, conjunction, implication

Introduction

We consider

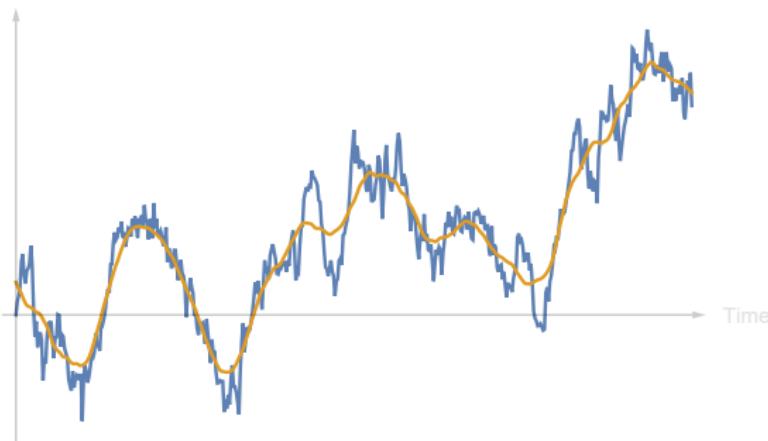
$$\begin{aligned} & \min_{x,z} \frac{1}{2} x^\top Q x + d^\top x + c^\top z \\ \text{s.t. } & x_i(1 - z_i) = 0 \quad \forall i \in [n] \\ & z \in Z \subseteq \{0, 1\}^n, \end{aligned} \tag{MIQP}$$

where

- $Q \succeq 0$ is PSD
- $z_i = \mathbb{I}_{x_i \neq 0}$ is the “support” of x_i
- Z capture logical conditions - cardinality, disjunction, conjunction, implication

Motivation Application – Monitoring Problem

Monitoring Problem Assume at each time stamp i , a datapoint y_i is generated by a sensor system. Using the most recent observations $\{y_i\}_{i=1}^n$ **at each time stamp**, one aims to infer the true value of time series process $\{x_i\}_{i=1}^n$ to detect changes or anomalies.

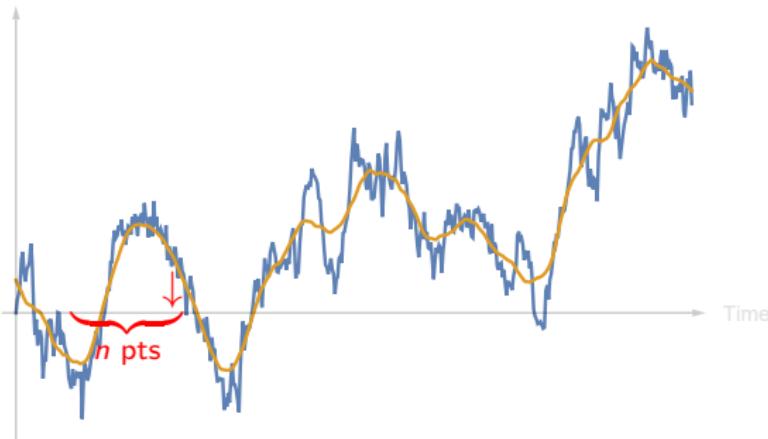


Applications

- Manufacturing system Yan et al. (2017)
- Personalized medicine Dunn et al. (2018)

Motivation Application – Monitoring Problem

Monitoring Problem Assume at each time stamp i , a datapoint y_i is generated by a sensor system. Using the most recent observations $\{y_i\}_{i=1}^n$ **at each time stamp**, one aims to infer the true value of time series process $\{x_i\}_{i=1}^n$ to detect changes or anomalies.

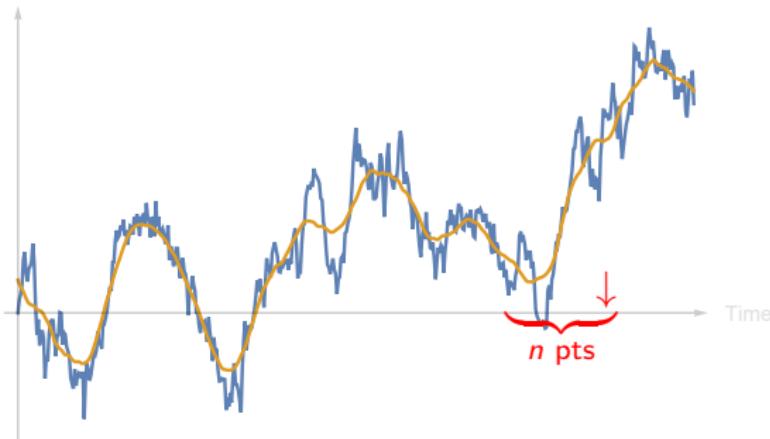


Applications

- Manufacturing system Yan et al. (2017)
- Personalized medicine Dunn et al. (2018)

Motivation Application – Monitoring Problem

Monitoring Problem Assume at each time stamp i , a datapoint y_i is generated by a sensor system. Using the most recent observations $\{y_i\}_{i=1}^n$ **at each time stamp**, one aims to infer the true value of time series process $\{x_i\}_{i=1}^n$ to detect changes or anomalies.



Applications

- Manufacturing system Yan et al. (2017)
- Personalized medicine Dunn et al. (2018)

Motivation Application – Monitoring Problem

At each time stamp, the monitoring problem can be modeled as

$$\min_{x,z \in \mathbb{R}^n} \underbrace{\frac{1}{2} \sum_{i=1}^n (x_i - y_i)^2}_{\text{fitness}} + \underbrace{\frac{1}{2} x^\top Rx}_{\text{regularizer}} + \underbrace{\mu \|x\|_0}_{\text{sparsity}}$$

where $Q = I + R$, $c = \mu \mathbf{1}$, $d = -y$,

Commonly used regularizer

- Moving average: $x^\top Rx = \lambda \sum_i \left(x_i - \frac{1}{k} \sum_{j=1}^k x_{i-j} \right)^2$ (bandwidth k)
- Ridge: $x^\top Rx = \lambda \|x\|_2^2$ (bandwidth $k=0$)
- Hodrick-Prescott: $x^\top Rx = \lambda \sum_i (x_{i-2} - 2x_{i-1} + x_i)^2$ (bandwidth $k = 2$)
- k -order differences (bandwidth k)

Motivation Application – Monitoring Problem

At each time stamp, the monitoring problem can be modeled as

$$\begin{aligned} \min_{x,z \in \mathbb{R}^n} \quad & \underbrace{\frac{1}{2} \sum_{i=1}^n (x_i - y_i)^2}_{\text{fitness}} + \underbrace{\frac{1}{2} x^\top R x}_{\text{regularizer}} + \mu \underbrace{\sum_{i=1}^n z_i}_{\text{sparsity}} \\ \text{s.t. } \quad & x_i(1 - z_i) = 0, \quad z_i \in \{0, 1\} \quad \forall i = 1, \dots, n \end{aligned}$$

where $Q = I + R$, $c = \mu \mathbf{1}$, $d = -y$, $\|x\|_0 = \# \text{ nonzero entries in } x$

Commonly used regularizer

- Moving average: $x^\top R x = \lambda \sum_i \left(x_i - \frac{1}{k} \sum_{j=1}^k x_{i-j} \right)^2$ (bandwidth k)
- Ridge: $x^\top R x = \lambda \|x\|_2^2$ (bandwidth $k=0$)
- Hodrick-Prescott: $x^\top R x = \lambda \sum_i (x_{i-2} - 2x_{i-1} + x_i)^2$ (bandwidth $k = 2$)
- k -order differences (bandwidth k)

Motivation Application – Monitoring Problem

At each time stamp, the monitoring problem can be modeled as

$$\begin{aligned} \min_{x, z \in \mathbb{R}^n} \quad & \underbrace{\frac{1}{2} \sum_{i=1}^n (x_i - y_i)^2}_{\text{fitness}} + \underbrace{\frac{1}{2} x^\top R x}_{\text{regularizer}} + \mu \underbrace{\sum_{i=1}^n z_i}_{\text{sparsity}} \\ \text{s.t. } \quad & x_i(1 - z_i) = 0, \quad z_i \in \{0, 1\} \quad \forall i = 1, \dots, n \end{aligned}$$

where $Q = I + R$, $c = \mu \mathbf{1}$, $d = -y$, $Z = \{0, 1\}^n$

Commonly used regularizer

- Moving average: $x^\top R x = \lambda \sum_i \left(x_i - \frac{1}{k} \sum_{j=1}^k x_{i-j} \right)^2$ (bandwidth k)
- Ridge: $x^\top R x = \lambda \|x\|_2^2$ (bandwidth $k=0$)
- Hodrick-Prescott: $x^\top R x = \lambda \sum_i (x_{i-2} - 2x_{i-1} + x_i)^2$ (bandwidth $k = 2$)
- k -order differences (bandwidth k)

Goal

How hard is the problem?

$$\begin{aligned} \min_{x,z} \quad & \frac{1}{2} x^\top Q x + d^\top x + c^\top z \\ \text{s.t.} \quad & x_i(1 - z_i) = 0 \quad \forall i \in [n] \\ & z \in Z \subseteq \{0,1\}^n \end{aligned}$$

- \mathcal{NP} -hard in general, e.g., OLS, $Q = I + \text{Rank-one}$

Goal

How hard is the problem?

$$\begin{aligned} \min_{x,z} \quad & \frac{1}{2} x^\top Q x + d^\top x + c^\top z \\ \text{s.t.} \quad & x_i(1 - z_i) = 0 \quad \forall i \in [n] \\ & z \in Z \subseteq \{0,1\}^n \end{aligned}$$

- \mathcal{NP} -hard in general, e.g., OLS, $Q = I$ + Rank-one

In online settings:

- MIP solvers? Assume 1000 time stamps and utilizing the most recent 200 observations to make inference \Rightarrow around 1000 MIQPs each with 200 binary vars!

Goal

How hard is the problem?

$$\begin{aligned} & \min_{x,z} \frac{1}{2} x^\top Q x + d^\top x + c^\top z \\ \text{s.t. } & x_i(1 - z_i) = 0 \quad \forall i \in [n] \\ & z \in Z \subseteq \{0,1\}^n \end{aligned}$$

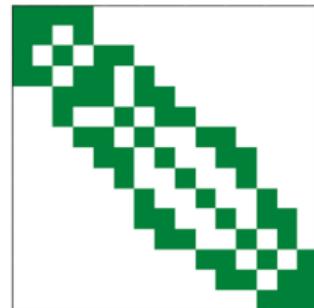
- \mathcal{NP} -hard in general, e.g., OLS, $Q = I + \text{Rank-one}$

Goal: get a real-time solution to (MIQP) in online settings (that is, data d is revealed at each time stamp)

Goal

How hard is the problem?

$$\begin{aligned} \min_{x,z} \quad & \frac{1}{2} x^\top Q x + d^\top x + c^\top z \\ \text{s.t.} \quad & x_i(1 - z_i) = 0 \quad \forall i \in [n] \\ & z \in Z \subseteq \{0,1\}^n \end{aligned}$$



- \mathcal{NP} -hard in general, e.g., OLS, $Q = I + \text{Rank-one}$

Goal: get a real-time solution to (MIQP) in online settings (that is, data d is revealed at each time stamp)

Assumption: Q has a small bandwidth k , i.e., $Q_{ij} = 0$ if $|i - j| > k$

Agenda

- 1 Introduction
- 2 Decision Diagram Basics
- 3 Decision Diagrams for MIQP
- 4 Convexification
- 5 Computational Experiments

Historical Origin

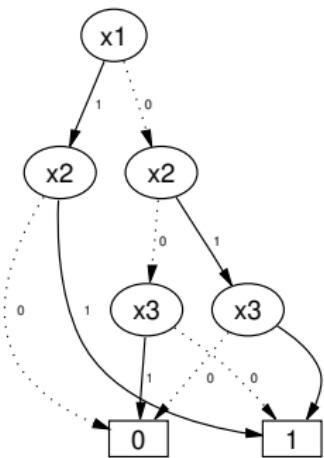
Decision diagrams encode Boolean functions

- Lee (1959), Akers (1978), Bryant (1986)
- Historically used for circuit design and verification

Example

$$f(x) = (\neg x_1 \wedge \neg x_2 \wedge \neg x_3) \vee (x_1 \wedge x_2) \vee (x_2 \wedge x_3)$$

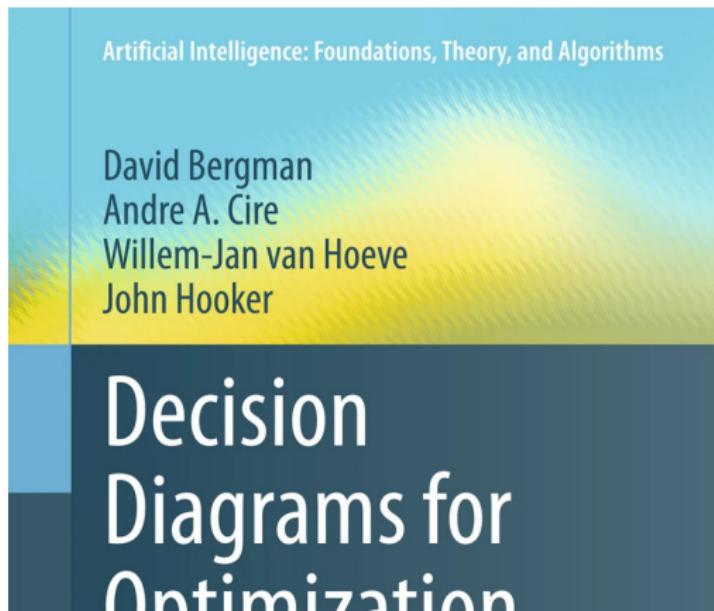
x_1	x_2	x_3	$f(x)$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1



Decision Diagram for Binary Linear Optimization

Using DD to solve binary linear optimization problems was pioneered by CMU scholars

$$\begin{aligned} \min f(z) &\stackrel{\text{def}}{=} c^\top z \\ \text{s.t. } z &\in Z \subseteq \{0, 1\}^n \end{aligned}$$



Decision Diagram for Binary Linear Optimization

To illustrate, consider a knapsack problem

$$\max_{z \in \{0,1\}^4} 8z_1 + 14z_2 + 7z_3 + 6z_4$$

$$\text{s.t. } 3z_1 + 6z_2 + 3z_3 + 4z_4 \leq 6$$

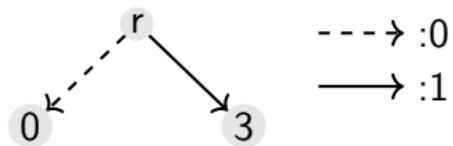
- Arc \Leftrightarrow assignment of z_i
- Each node \Leftrightarrow a state:
total weights of the
selected items

z_1

z_2

z_3

z_4



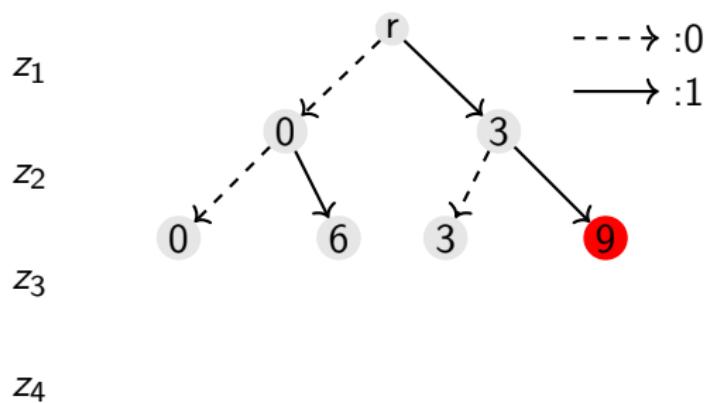
Decision Diagram for Binary Linear Optimization

To illustrate, consider a knapsack problem

$$\max_{z \in \{0,1\}^4} 8z_1 + 14z_2 + 7z_3 + 6z_4$$

$$\text{s.t. } 3z_1 + 6z_2 + 3z_3 + 4z_4 \leq 6$$

- Remove infeasible nodes



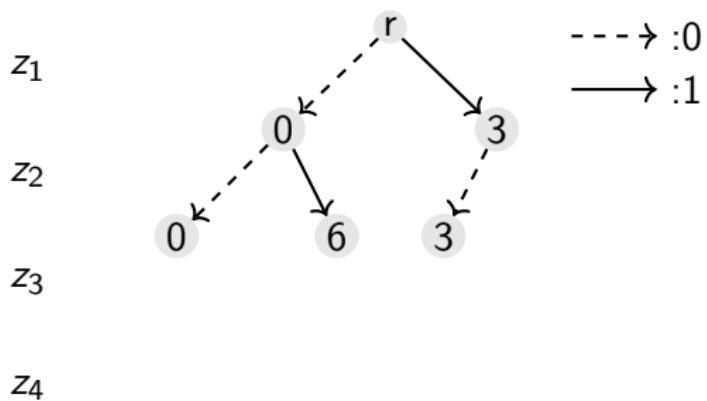
Decision Diagram for Binary Linear Optimization

To illustrate, consider a knapsack problem

$$\max_{z \in \{0,1\}^4} 8z_1 + 14z_2 + 7z_3 + 6z_4$$

$$\text{s.t. } 3z_1 + 6z_2 + 3z_3 + 4z_4 \leq 6$$

- Remove infeasible nodes



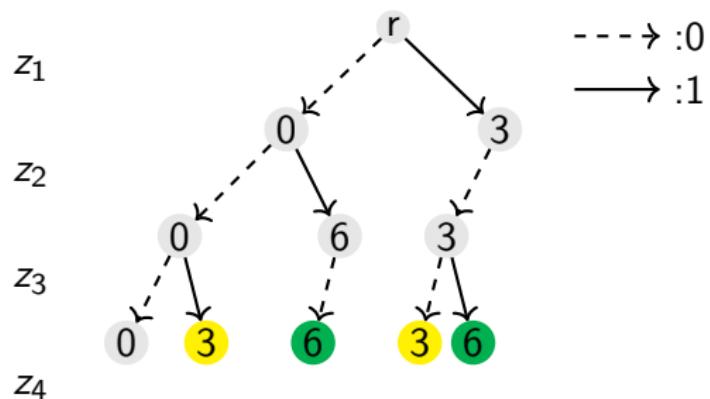
Decision Diagram for Binary Linear Optimization

To illustrate, consider a knapsack problem

$$\max_{z \in \{0,1\}^4} 8z_1 + 14z_2 + 7z_3 + 6z_4$$

$$\text{s.t. } 3z_1 + 6z_2 + 3z_3 + 4z_4 \leq 6$$

- Merge two nodes with the same states in the same layer



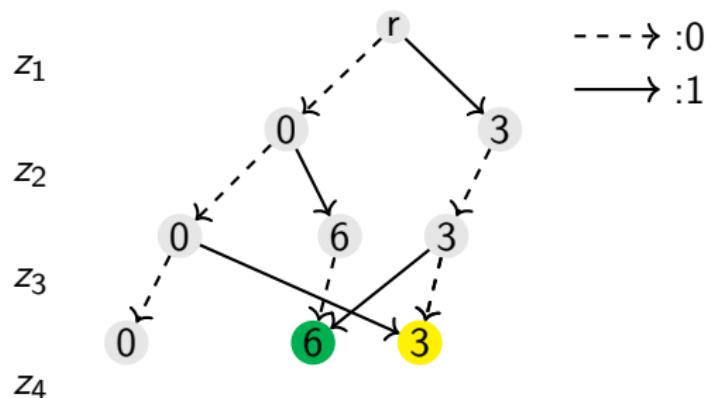
Decision Diagram for Binary Linear Optimization

To illustrate, consider a knapsack problem

$$\max_{z \in \{0,1\}^4} 8z_1 + 14z_2 + 7z_3 + 6z_4$$

$$\text{s.t. } 3z_1 + 6z_2 + 3z_3 + 4z_4 \leq 6$$

- Merge two nodes with the same states in the same layer



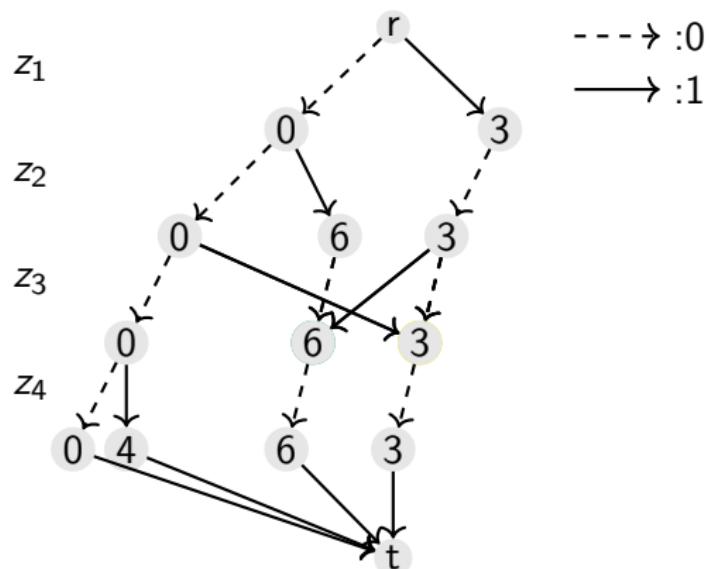
Decision Diagram for Binary Linear Optimization

To illustrate, consider a knapsack problem

$$\max_{z \in \{0,1\}^4} 8z_1 + 14z_2 + 7z_3 + 6z_4$$

$$\text{s.t. } 3z_1 + 6z_2 + 3z_3 + 4z_4 \leq 6$$

- Each $(r-t)$ path \Leftrightarrow a feasible solution z



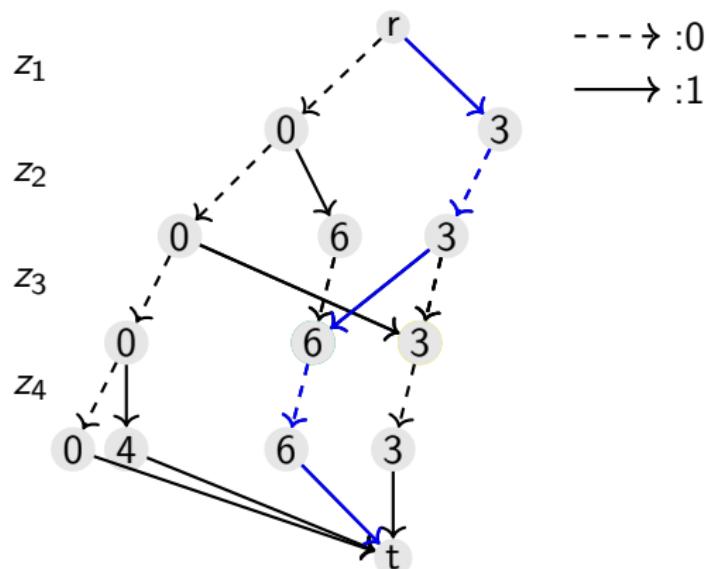
Decision Diagram for Binary Linear Optimization

To illustrate, consider a knapsack problem

$$\max_{z \in \{0,1\}^4} 8z_1 + 14z_2 + 7z_3 + 6z_4$$

$$\text{s.t. } 3z_1 + 6z_2 + 3z_3 + 4z_4 \leq 6$$

- Each (r-t) path \Leftrightarrow a feasible solution z



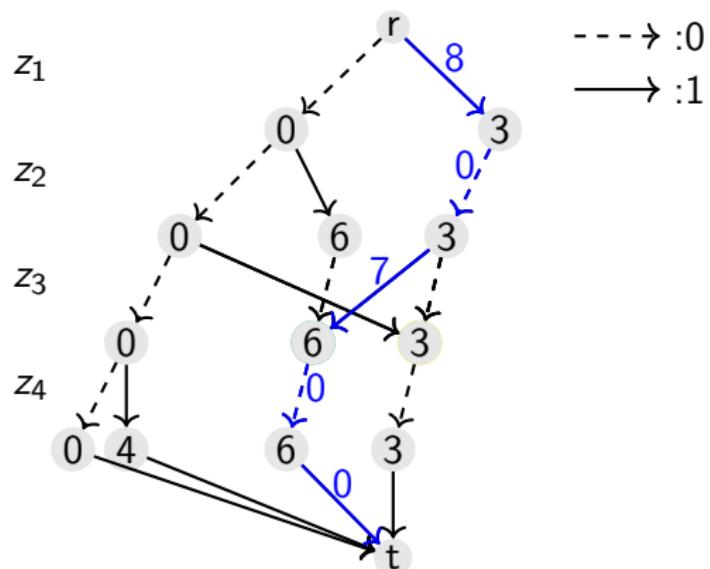
Decision Diagram for Binary Linear Optimization

To illustrate, consider a knapsack problem

$$\max_{z \in \{0,1\}^4} 8z_1 + 14z_2 + 7z_3 + 6z_4$$

$$\text{s.t. } 3z_1 + 6z_2 + 3z_3 + 4z_4 \leq 6$$

- Arc length = obj coef
- Path length = obj of a feasible sol
- Binary program \Leftrightarrow shortest/longest path problem for an acyclic directed graph



Decision Diagram for Binary Linear Optimization

More Comments

- Decision diagram is one way to express dynamic programming
 - state space $\{s^\ell\}$
 - transition function $\phi(s^\ell, \hat{z}^\ell)$
 - cost function/arc length ℓ_a
- Decision diagram is an effective tool to explore combinatorial structures

The 0-1 inequality

$$\begin{aligned} 300z_0 + 300z_1 + 285z_2 + 285z_3 + 265z_4 + 265z_5 + 230z_6 + \\ 230z_7 + 190z_8 + 200z_9 + 400z_{10} + 200z_{11} + 400z_{12} + 200z_{13} \\ + 400z_{14} + 200z_{15} + 400z_{16} + 200z_{17} + 400z_{18} \leq 2700 \end{aligned}$$

has 117,520 minimal feasible solutions (or minimal covers). But its reduced BDD has only 152 nodes...

- Relaxed/restricted DD, variable ordering, etc...

Agenda

- 1 Introduction
- 2 Decision Diagram Basics
- 3 Decision Diagrams for MIQP
- 4 Convexification
- 5 Computational Experiments

DD Construction for MIQP

We first assume $Z = \{0, 1\}^n$

$$\begin{aligned} & \min_{x,z} \frac{1}{2} x^\top Q x + d^\top x + c^\top z \\ \text{s.t. } & x_i(1 - z_i) = 0 \quad \forall i \in [n] \\ & z \in \{0, 1\}^n \end{aligned} \tag{MIQP}$$

Question: how to construct a decision diagram for problems involving continuous variables and nonseparable objectives?

DD Construction for MIQP

Observation For a fixed support $z \in \{0, 1\}^n$, denote $S = \{i : z_i = 1\}$. Then

$$g(z) \triangleq \min_{x: x \circ (1-z) = 0} \frac{1}{2} x^\top Q x + d^\top x = -\frac{1}{2} d_S^\top Q_{SS}^{-1} d_S = -\frac{1}{2} \langle (Q \circ z z^\top)^\dagger, d^\top d \rangle,$$

where $[(Q \circ z z^\top)^\dagger]_{ij} = [Q_{SS}^{-1}]_{ij}$ if $i, j \in S$ and 0 otherwise.

DD Construction for MIQP

Observation For a fixed support $z \in \{0, 1\}^n$, denote $S = \{i : z_i = 1\}$.

Then

$$g(z) \triangleq \min_{x: x \circ (1-z) = 0} \frac{1}{2} x^\top Q x + d^\top x = -\frac{1}{2} d_S^\top Q_{SS}^{-1} d_S = -\frac{1}{2} \langle (Q \circ z z^\top)^\dagger, d^\top d \rangle,$$

where $[(Q \circ z z^\top)^\dagger]_{ij} = [Q_{SS}^{-1}]_{ij}$ if $i, j \in S$ and 0 otherwise.

Example Consider $Q = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 2 \end{pmatrix}$ and $z = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$. Then

- $S = \{2, 3\}$
- $Q_{SS}^{-1} = \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 2/5 & 1/5 \\ 1/5 & 3/5 \end{pmatrix}$
- $(Q \circ z z^\top)^\dagger = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2/5 & 1/5 \\ 0 & 1/5 & 3/5 \end{pmatrix}$

DD Construction for MIQP

Observation For a fixed support $z \in \{0, 1\}^n$, denote $S = \{i : z_i = 1\}$. Then

$$g(z) \triangleq \min_{x: x \circ (1-z) = 0} \frac{1}{2} x^\top Q x + d^\top x = -\frac{1}{2} d_S^\top Q_{SS}^{-1} d_S = -\frac{1}{2} \langle (Q \circ z z^\top)^\dagger, d^\top d \rangle,$$

where $[(Q \circ z z^\top)^\dagger]_{ij} = [Q_{SS}^{-1}]_{ij}$ if $i, j \in S$ and 0 otherwise.

State Space Assume v_ℓ is one node at layer ℓ corresponding to the partial solution $z^\ell \in \{0, 1\}^{\ell-1}$. Define the state of v_ℓ as

$$s_{v_\ell} = \left[Q \circ \hat{z}^\ell \left(\hat{z}^\ell \right)^\top \right]^\dagger,$$

where $\hat{z}^\ell \in \mathbb{R}^n$ is defined by $\hat{z}_i^\ell = z_i^\ell$ if $i \leq \ell - 1$ and 0 otherwise.

DD Construction for MIQP

Observation For a fixed support $z \in \{0, 1\}^n$, denote $S = \{i : z_i = 1\}$. Then

$$g(z) \triangleq \min_{x: x \circ (1-z) = 0} \frac{1}{2} x^\top Q x + d^\top x = -\frac{1}{2} d_S^\top Q_{SS}^{-1} d_S = -\frac{1}{2} \langle (Q \circ z z^\top)^\dagger, d^\top d \rangle,$$

where $[(Q \circ z z^\top)^\dagger]_{ij} = [Q_{SS}^{-1}]_{ij}$ if $i, j \in S$ and 0 otherwise.

State Space Assume v_ℓ is one node at layer ℓ corresponding to the partial solution $z^\ell \in \{0, 1\}^{\ell-1}$. Define the state of v_ℓ as

$$s_{v_\ell} = \left[Q \circ \hat{z}^\ell \left(\hat{z}^\ell \right)^\top \right]^\dagger,$$

where $\hat{z}^\ell \in \mathbb{R}^n$ is defined by $\hat{z}_i^\ell = z_i^\ell$ if $i \leq \ell - 1$ and 0 otherwise.

Transition Function $s_{v_{\ell+1}} - s_{v_\ell}$ can be computed using rank-one updates

DD Construction for MIQP

Observation For a fixed support $z \in \{0, 1\}^n$, denote $S = \{i : z_i = 1\}$. Then

$$g(z) \triangleq \min_{x: x \circ (1-z) = 0} \frac{1}{2} x^\top Q x + d^\top x = -\frac{1}{2} d_S^\top Q_{SS}^{-1} d_S = -\frac{1}{2} \langle (Q \circ z z^\top)^\dagger, d^\top d \rangle,$$

where $[(Q \circ z z^\top)^\dagger]_{ij} = [Q_{SS}^{-1}]_{ij}$ if $i, j \in S$ and 0 otherwise.

State Space Assume v_ℓ is one node at layer ℓ corresponding to the partial solution $z^\ell \in \{0, 1\}^{\ell-1}$. Define the state of v_ℓ as

$$s_{v_\ell} = \left[Q \circ \hat{z}^\ell \left(\hat{z}^\ell \right)^\top \right]^\dagger,$$

where $\hat{z}^\ell \in \mathbb{R}^n$ is defined by $\hat{z}_i^\ell = z_i^\ell$ if $i \leq \ell - 1$ and 0 otherwise.

Transition Function $s_{v_{\ell+1}} - s_{v_\ell}$ can be computed using rank-one updates

Arc Length $\ell_{v_\ell v_{\ell+1}} = g(\hat{z}^{\ell+1}) - g(\hat{z}^\ell) + c_\ell \hat{z}_\ell^\ell$ which is linear in dd^\top

DD Construction for MIQP

Observation For a fixed support $z \in \{0, 1\}^n$, denote $S = \{i : z_i = 1\}$. Then

$$g(z) \triangleq \min_{x: x \circ (1-z) = 0} \frac{1}{2} x^\top Q x + d^\top x = -\frac{1}{2} d_S^\top Q_{SS}^{-1} d_S = -\frac{1}{2} \langle (Q \circ z z^\top)^\dagger, d^\top d \rangle,$$

where $[(Q \circ z z^\top)^\dagger]_{ij} = [Q_{SS}^{-1}]_{ij}$ if $i, j \in S$ and 0 otherwise.

State Space Assume v_ℓ is one node at layer ℓ corresponding to the partial solution $z^\ell \in \{0, 1\}^{\ell-1}$. Define the state of v_ℓ as

$$s_{v_\ell} = \left[Q \circ \hat{z}^\ell \left(\hat{z}^\ell \right)^\top \right]^\dagger,$$

where $\hat{z}^\ell \in \mathbb{R}^n$ is defined by $\hat{z}_i^\ell = z_i^\ell$ if $i \leq \ell - 1$ and 0 otherwise.

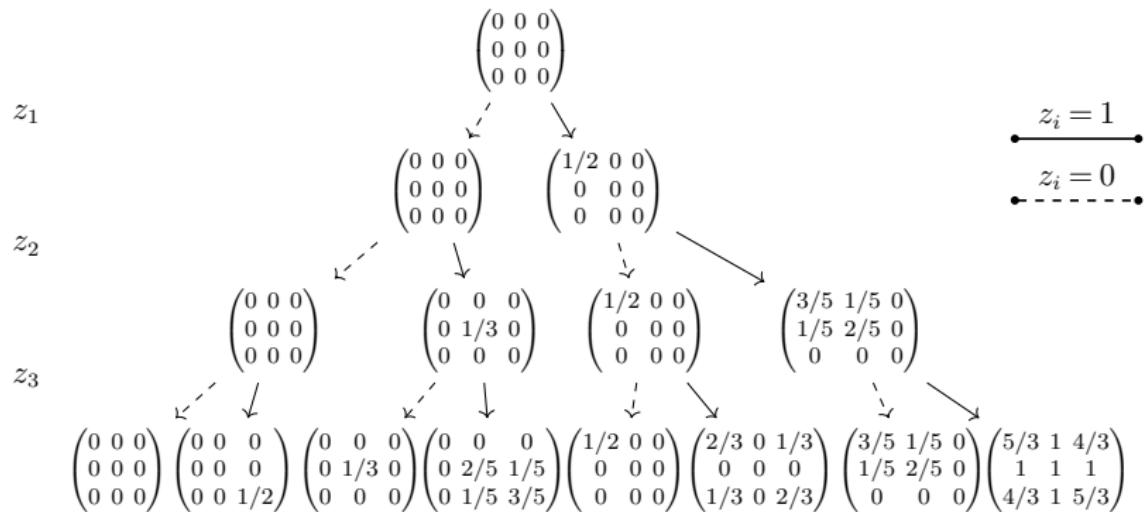
Transition Function $s_{v_{\ell+1}} - s_{v_\ell}$ can be computed using rank-one updates

Arc Length $\ell_{v_\ell v_{\ell+1}} = g(\hat{z}^{\ell+1}) - g(\hat{z}^\ell) + c_\ell \hat{z}_\ell^\ell$ which is linear in dd^\top

Remark: The architecture of DD does not depend on $d \Rightarrow$ **only need to construct DD once in the online setting**

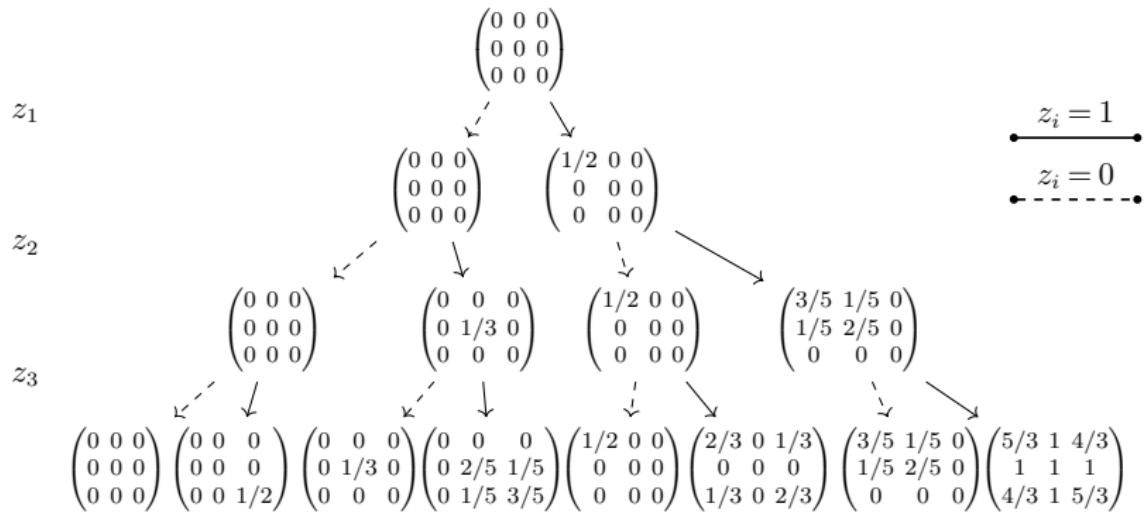
Illustrating Example

Example Consider $Q = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 2 \end{pmatrix}$. Then the decision diagram is



Illustrating Example

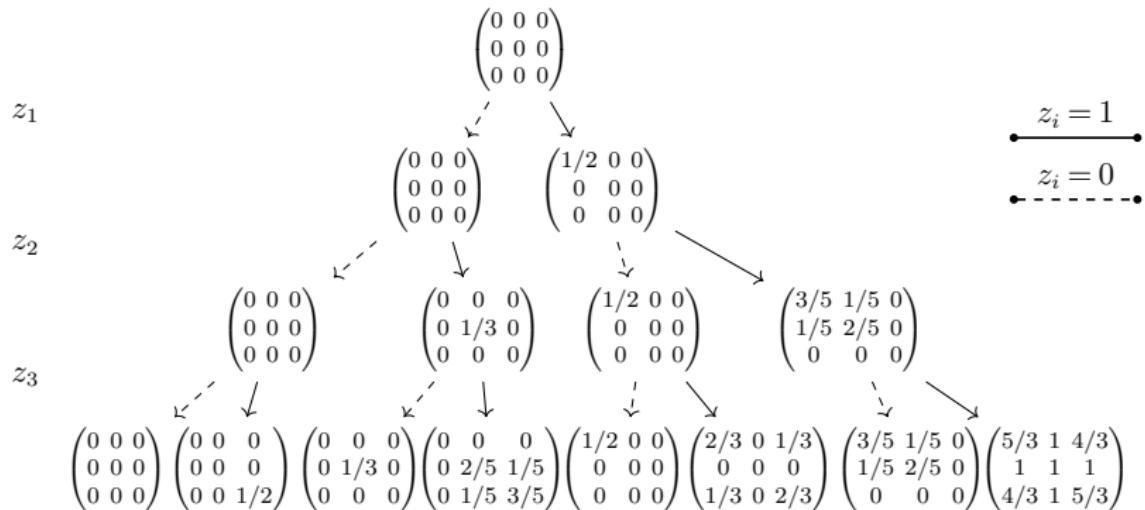
Example Consider $Q = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 2 \end{pmatrix}$. Then the decision diagram is



A second thought: we are doing enumeration...

Illustrating Example

Example Consider $Q = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 2 \end{pmatrix}$. Then the decision diagram is



A second thought: we are doing enumeration... Can we improve?

One observation

Consider $Q = \begin{pmatrix} 5 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 5 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 5 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 5 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 5 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 5 & * \\ 0 & 0 & 0 & 0 & 0 & * & * \end{pmatrix}_{7 \times 7}$, $\bar{z}^\ell = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$ and $\hat{z}^\ell = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$.

Then

$$A = \begin{pmatrix} \star & \begin{pmatrix} 0.00 & \mathbf{0.00008} & 0 \\ 0.00 & \mathbf{0.00040} & 0 \\ 0.01 & \mathbf{0.00190} & 0 \\ 0.05 & \mathbf{0.00909} & 0 \\ 0.22 & \mathbf{0.04356} & 0 \\ 0.04 & \mathbf{0.20871} & 0 \\ 0 & 0 & 0 \end{pmatrix}_{7 \times 3} \end{pmatrix}_{7 \times 7}, \quad B = \begin{pmatrix} \star & \begin{pmatrix} 0 & 0 & 0 \\ 0.00 & \mathbf{0.00038} & 0 \\ 0.01 & \mathbf{0.00189} & 0 \\ 0.05 & \mathbf{0.00909} & 0 \\ 0.22 & \mathbf{0.04356} & 0 \\ 0.04 & \mathbf{0.20871} & 0 \\ 0 & 0 & 0 \end{pmatrix}_{7 \times 3} \end{pmatrix}_{7 \times 7},$$

where \star is the submatrix unrelated to the transition/cost function, $A = (Q \circ \bar{z}^\ell (\bar{z}^\ell)^\top)^\dagger$, $B = (Q \circ \hat{z}^\ell (\hat{z}^\ell)^\top)^\dagger$.

Observation: $\max_{i,j \text{ essential}} |A_{ij} - B_{ij}| < 8 \times 10^{-5} \stackrel{\text{def}}{=} \epsilon$, i.e., the two states are essentially indistinguishable up to numerical precision $\epsilon \Rightarrow \epsilon$ -exact decision diagram

ϵ -exact Decision Diagrams

Definition An ϵ -exact decision diagram is any decision diagram produced layer by layer according to the original construction rule and then merging those ϵ -indistinguishable states.

ϵ -exact Decision Diagrams

Definition An ϵ -exact decision diagram is any decision diagram produced layer by layer according to the original construction rule and then merging those ϵ -indistinguishable states.

A Fully Polynomial Time Approximation Scheme (FPTAS)

Theorem (Informal)

Given a matrix with bandwidth k , with a proper merging rule, one can construct a decision diagram $\mathcal{D}_{\text{approx}}$ such that

$$\# \text{ of arcs in } DD \leq c_1 n \left(\frac{\|d\|_\infty^2 n}{\epsilon} \right)^{c_2},$$

- where c_1 and c_2 only depend on k and the condition number of Q ;
- ϵ is the optimality gap.

ϵ -exact Decision Diagrams

Definition An ϵ -exact decision diagram is any decision diagram produced layer by layer according to the original construction rule and then merging those ϵ -indistinguishable states.

A Fully Polynomial Time Approximation Scheme (FPTAS)

Theorem (Informal)

Given a matrix with bandwidth k , with a proper merging rule, one can construct a decision diagram $\mathcal{D}_{\text{approx}}$ such that

$$\# \text{ of arcs in } DD \leq c_1 n \left(\frac{\|d\|_\infty^2 n}{\epsilon} \right)^{c_2},$$

- where c_1 and c_2 only depend on k and the condition number of Q ;
- ϵ is the optimality gap.

Remark. In practical implementation, taking $\epsilon = 10^{-5}$ is sufficient to obtain exact optimal solutions within machine precision.

Agenda

- 1 Introduction
- 2 Decision Diagram Basics
- 3 Decision Diagrams for MIQP
- 4 Convexification
- 5 Computational Experiments

More constraints...

What if we have more constraints over (x, z) ?

$$\begin{aligned} & \min_{x,z} \frac{1}{2} x^\top Q x + d^\top x + c^\top z \\ & \text{s.t. } x_i(1 - z_i) = 0 \quad \forall i \in [n] \end{aligned} \tag{MIQP}$$

,

More constraints...

What if we have more constraints over (x, z) ?

If $Z \notin \{0, 1\}^n$, delete nodes due to infeasibility in DD

$$\begin{aligned} & \min_{x,z} \frac{1}{2} x^\top Q x + d^\top x + c^\top z \\ & \text{s.t. } x_i(1 - z_i) = 0 \quad \forall i \in [n] \\ & \quad z \in Z, \end{aligned} \tag{MIQP}$$

- E.g. $Z = \{z \in \{0, 1\}^n : \sum_{i=1}^n z_i \leq k\}$
The number of nodes is reduced $\Rightarrow \epsilon$ -exact DD remains a FPTAS

More constraints...

What if we have more constraints over (x, z) ?

If $Z \notin \{0, 1\}^n$ and $P \notin \mathbb{R}^n$,

$$\begin{aligned} & \min_{x, z} \frac{1}{2} x^\top Q x + d^\top x + c^\top z \\ \text{s.t. } & x_i(1 - z_i) = 0 \quad \forall i \in [n] \\ & z \in Z, \quad x \in P \end{aligned} \tag{MIQP}$$

- This will destroy the exact small-bandwidth structure
⇒ we cannot expect the same complexity anymore

More constraints...

What if we have more constraints over (x, z) ?

If $Z \notin \{0, 1\}^n$ and $P \notin \mathbb{R}^n$,

$$\begin{aligned} & \min_{x,z} \frac{1}{2} x^\top Q x + d^\top x + c^\top z \\ \text{s.t. } & x_i(1 - z_i) = 0 \quad \forall i \in [n] \\ & z \in Z, \quad x \in P \end{aligned} \tag{MIQP}$$

- This will destroy the exact small-bandwidth structure
⇒ we cannot expect the same complexity anymore

How to exploit the small-bandwidth structure of Q in solving (MIQP)?

More constraints...

What if we have more constraints over (x, z) ?

If $Z \notin \{0, 1\}^n$ and $P \notin \mathbb{R}^n$,

$$\begin{aligned} & \min_{x,z} \frac{1}{2} x^\top Q x + d^\top x + c^\top z \\ & \text{s.t. } x_i(1 - z_i) = 0 \quad \forall i \in [n] \\ & \quad z \in Z, \quad x \in P \end{aligned} \tag{MIQP}$$

- This will destroy the exact small-bandwidth structure
⇒ we cannot expect the same complexity anymore

How to exploit the small-bandwidth structure of Q in solving (MIQP)?

⇒ Convexification

Role of Convexification in MIP

Recipe for solving a general mixed-integer program (MIP)

Role of Convexification in MIP

Recipe for solving a general mixed-integer program (MIP)

solving a MIP \Leftrightarrow enumeration + convexification

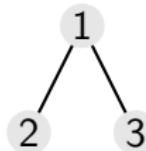
Role of Convexification in MIP

Recipe for solving a general mixed-integer program (MIP)

solving a MIP \Leftrightarrow enumeration + convexification

Enumeration Branch & bound algorithm

- Solve a convex relaxation at each node of the tree



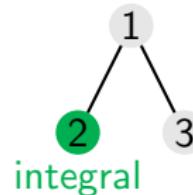
Role of Convexification in MIP

Recipe for solving a general mixed-integer program (MIP)

solving a MIP \Leftrightarrow enumeration + convexification

Enumeration Branch & bound algorithm

- Solve a convex relaxation at each node of the tree



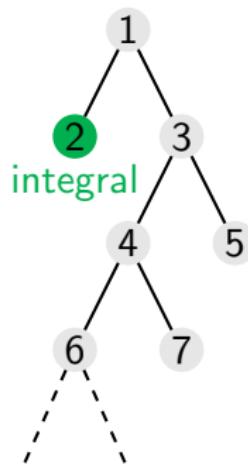
Role of Convexification in MIP

Recipe for solving a general mixed-integer program (MIP)

solving a MIP \Leftrightarrow enumeration + convexification

Enumeration Branch & bound algorithm

- Solve a convex relaxation at each node of the tree
- Branch on variables with fractional value



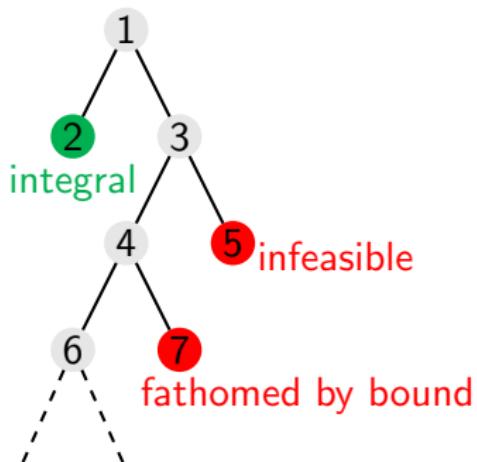
Role of Convexification in MIP

Recipe for solving a general mixed-integer program (MIP)

solving a MIP \Leftrightarrow enumeration + convexification

Enumeration Branch & bound algorithm

- Solve a convex relaxation at each node of the tree
- Branch on variables with fractional value
- Prune by **integrality**, **infeasibility** and **bounds**



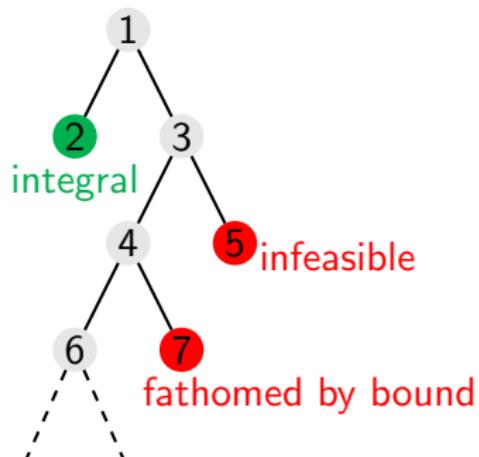
Role of Convexification in MIP

Recipe for solving a general mixed-integer program (MIP)

solving a MIP \Leftrightarrow enumeration + convexification

Enumeration Branch & bound algorithm

- Solve a **convex relaxation** at each node of the tree
- Branch on variables with fractional value
- Prune by **integrality**, **infeasibility** and **bounds**
- Constructing strong convex relaxations is an art!



Role of Convexification in MIP

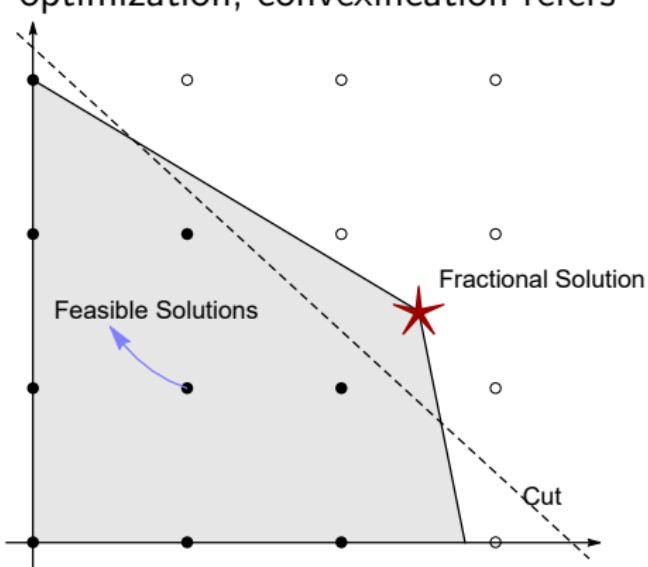
Recipe for solving a general mixed-integer program (MIP)

solving a MIP \Leftrightarrow enumeration + **convexification**

Convexification In mixed-integer **linear** optimization, convexification refers to various kinds of cutting planes

- Gomory cuts (1950s)
- Mixed-integer rounding cuts
- Flow cover cuts
- ...

Over 70-year development

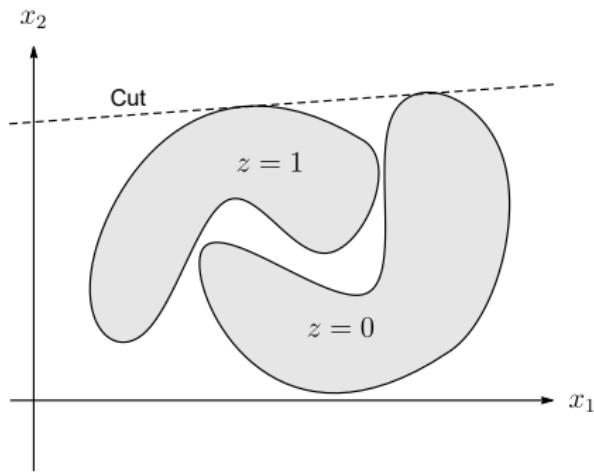


Role of Convexification in MIP

Recipe for solving a general mixed-integer program (MIP)

solving a MIP \Leftrightarrow enumeration + **convexification**

Convexification In mixed-integer **nonlinear** optimization, cutting planes could be ineffective



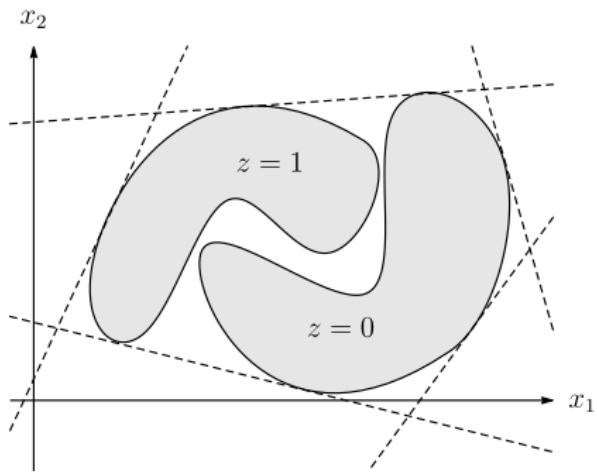
Role of Convexification in MIP

Recipe for solving a general mixed-integer program (MIP)

solving a MIP \Leftrightarrow enumeration + **convexification**

Convexification In mixed-integer **nonlinear** optimization, cutting planes could be ineffective

- Need infinite number of linear cuts to ensure feasibility



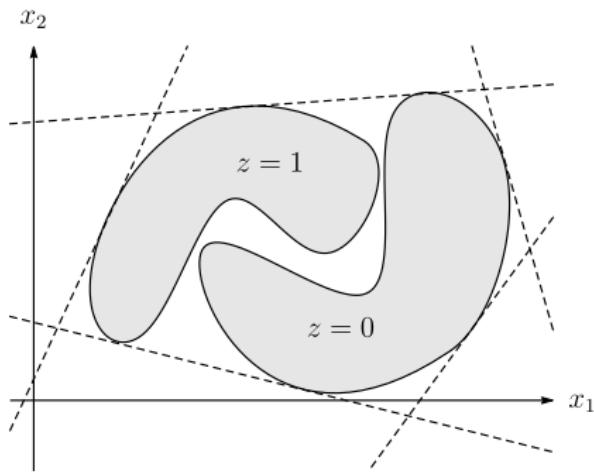
Role of Convexification in MIP

Recipe for solving a general mixed-integer program (MIP)

solving a MIP \Leftrightarrow enumeration + **convexification**

Convexification In mixed-integer **nonlinear** optimization, cutting planes could be ineffective

- Need infinite number of linear cuts to ensure feasibility
- Study the convex hull of **structured** mixed-integer **nonlinear** sets



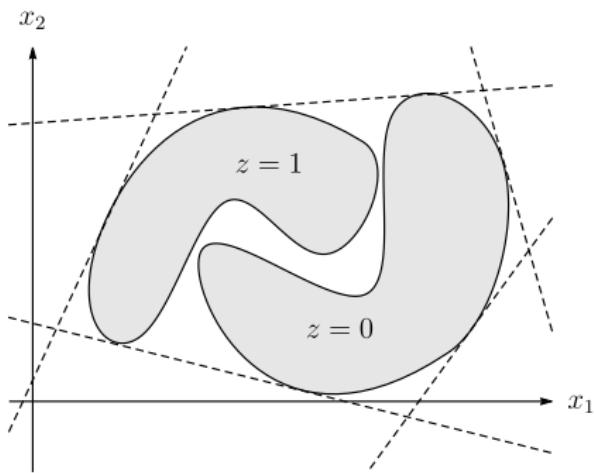
Role of Convexification in MIP

Recipe for solving a general mixed-integer program (MIP)

solving a MIP \Leftrightarrow enumeration + **convexification**

Convexification In mixed-integer **nonlinear** optimization, cutting planes could be ineffective

- Need infinite number of linear cuts to ensure feasibility
- Study the convex hull of **structured** mixed-integer **nonlinear** sets
- Need new convexification techniques



Epigraphical reformulation

Get back.... Note that

$$\begin{aligned} & \min_{x,z} \frac{1}{2} x^\top Q x + d^\top x + c^\top z \\ \text{s.t. } & x_i(1 - z_i) = 0 \quad \forall i \in [n] \\ & z \in Z, x \in P \end{aligned} \tag{MIQP}$$

is equivalent to

$$\begin{aligned} & \min_{x,z} t + d^\top x + c^\top z \\ \text{s.t. } & t \geq \frac{1}{2} x^\top Q x \\ & x_i(1 - z_i) = 0, z_i \in \{0, 1\} \quad \forall i \in [n] \\ & z \in Z \\ & x \in P \end{aligned}$$

Epigraphical reformulation

Get back.... Note that

$$\begin{aligned} & \min_{x,z} \frac{1}{2} x^\top Q x + d^\top x + c^\top z \\ \text{s.t. } & x_i(1 - z_i) = 0 \quad \forall i \in [n] \\ & z \in Z, x \in P \end{aligned} \tag{MIQP}$$

is equivalent to

$$\begin{aligned} & \min_{x,z} t + d^\top x + c^\top z \\ \text{s.t. } & t \geq \frac{1}{2} x^\top Q x \\ & x_i(1 - z_i) = 0, z_i \in \{0, 1\} \quad \forall i \in [n] \\ & z \in Z \\ & x \in P \end{aligned}$$

$\stackrel{\text{def}}{=} X_{Q,Z}$

Epigraphical reformulation

Get back.... Note that

$$\begin{aligned} & \min_{x,z} \frac{1}{2} x^\top Q x + d^\top x + c^\top z \\ \text{s.t. } & x_i(1 - z_i) = 0 \quad \forall i \in [n] \\ & z \in Z, x \in P \end{aligned} \tag{MIQP}$$

is equivalent to

$$\begin{aligned} & \min_{x,z} t + d^\top x + c^\top z \\ \text{s.t. } & t \geq \frac{1}{2} x^\top Q x \\ & x_i(1 - z_i) = 0, z_i \in \{0, 1\} \quad \forall i \in [n] \\ & z \in Z \\ & x \in P \end{aligned}$$

$\stackrel{\text{def}}{=} X_{Q,Z}$

- Replace $X_{Q,Z}$ with $\text{conv}(X_{Q,Z}) \Rightarrow$ a strong convex relaxation
- $X_{Q,Z}$ doesn't involve $d \Rightarrow$ only need to compute $\text{conv}(X_{Q,Z})$ once

Convexification

Define

$$X_{Q,Z} \triangleq \left\{ (t, x, z) \in \mathbb{R}^n \times \mathbb{R} \times Z : t \geq x^\top Q x, x_i(1 - z_i) = 0 \ \forall i \right\}.$$

With a DD at hand, one can show

Theorem (Convex Hull Description)

Point $(t, x, z) \in \text{conv}(X_{Q,Z})$ iff the following **SOCP-r** system is consistent

$$x_0 \geq \sum_{a \in A} \frac{w_a^2}{r_a}, \quad x = \sum_{a \in A} u_a w_a, \quad z = \sum_{a \in A: \nu_a=1} e_{\ell(a)} r_a, \quad r \in P$$

where

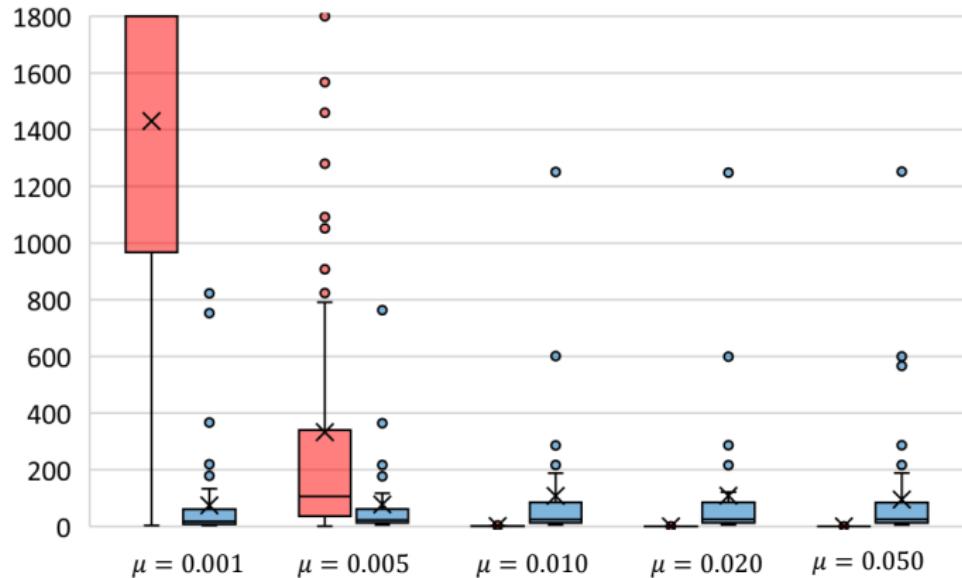
$$P = \left\{ r : \begin{array}{l} r \geq 0, \sum_{a \in A: \ell(a)=1} r_a = 1, \sum_{a \in A: \ell(a)=n} r_a = 1, \\ \sum_{a \in A: h_a=v} r_a = \sum_{a \in A: t_a=v} r_a \ \forall v \in N : \ell(v) \leq n \end{array} \right\}$$

is the path polytope associated with the decision diagram.

Agenda

- 1 Introduction
- 2 Decision Diagram Basics
- 3 Decision Diagrams for MIQP
- 4 Convexification
- 5 Computational Experiments

Computational Results in Offline Settings



Distribution of runtimes of Mosek (red) vs Decision diagram (blue) for $n = 200$ as a function sparsity parameter μ . Each boxplot represents an average over 5 different signals \mathbf{y} with n $k \in \{2, 3\}$ and $\lambda \in \{0.25, 0.50, 1.0, 2.00, 5.00\}$.

Computational Results in Online Settings

Online instances, each one requiring the sequential solution of 6,823 MIOs (31) with $n = 200$ (corresponding, for each point, to the most recent 200 observations).

k	λ	Setup time		Online time	
		$ A $	time_dd (s)	time_sp(s)	time_total(s)
2	0.25	10,965	7	0.001	7
	0.5	16,749	11	0.002	11
	1.0	30,963	24	0.004	30
	2.0	51,923	32	0.006	43
	5.0	88,491	62	0.013	88
3	0.25	56,789	40	0.007	48
	0.5	107,591	81	0.016	107
	1.0	233,917	184	0.035	239
	2.0	478,889	409	0.079	539
	5.0	963,643	864	0.185	1,261

Take Home Message

Summary

- Develop a real-time solution method for solving MIQPs with small bandwidth using decision diagrams
- Construct approximate DDs whose size is polynomial in the number of decision variables and $\frac{1}{\text{OPT GAP}} \Rightarrow \text{FPTAS}$
- Establish the convex hull results for the mixed-integer epigraph using constructed DD
- Amazing performance in practice!

Take Home Message

Summary

- Develop a real-time solution method for solving MIQPs with small bandwidth using decision diagrams
- Construct approximate DDs whose size is polynomial in the number of decision variables and $\frac{1}{\text{OPT GAP}} \Rightarrow \text{FPTAS}$
- Establish the convex hull results for the mixed-integer epigraph using constructed DD
- Amazing performance in practice!

Our paper is available at: <https://arxiv.org/pdf/2405.03051>

Thanks for your listening!

Reference I

Dunn, J., Runge, R., and Snyder, M. (2018). Wearables and the medical revolution. Personalized medicine, 15(5):429–448.

Yan, H., Paynabar, K., and Shi, J. (2017). Anomaly detection in images with smooth background via smooth-sparse decomposition. Technometrics, 59(1):102–114.