On SDP formulations for quadratic optimization with indicator variables

Shaoning Han

Department of Industrial & Systems Engineering University of Southern California

shaoning@usc.edu

November, 2020

Shaoning Han (USC)

SDPs for mixed-integer QCQPs

November, 2020 1 / 17

EL SQA

Collaborator

Andres Gomez University of Southern California

Alper Atamtürk University of California-Berkeley

イロト イポト イヨト イヨト

SDPs for mixed-integer QCQPs

EL OQO

Quadratic optimization with indicator variables

$$\min_{x,y} a'x + b'y + y'Qy$$
s.t. $y_i(1-x_i) = 0, \quad \forall i \in [n]$
 $x \in \{0,1\}^n, \ y \in \mathbb{R}^n_+,$
(MIO)

where $x_i = \mathbb{I}_{\{y_i \neq 0\}}$.

Shaoning Han (USC)

SDPs for mixed-integer QCQPs

November, 2020 3 / 17

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Quadratic optimization with indicator variables

$$\min_{x,y} a'x + b'y + y'Qy$$
s.t. $y_i(1-x_i) = 0, \quad \forall i \in [n]$
 $x \in \{0,1\}^n, y \in \mathbb{R}^n_+,$
(MIO)

where $x_i = \mathbb{I}_{\{y_i \neq 0\}}$.

- Portfolio optimization (Bienstock 1996)
- Optimal control (Gao and Li 2011)
- Signal denoising (Bach 2016)

...

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>

ELE SOC

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\min_{x,y} a'x + b'y + y'Qy \text{s.t.} \quad -Mx_i \le y_i \le Mx_i, \quad \forall i \in [n] \quad x \in \{0,1\}^n, \ y \in \mathbb{R}^n_+$$
 (Big-M)

EL SQA

Image: A match a ma

$$\begin{split} \min_{x,y} & a'x + b'y + y'Qy \\ \text{s.t.} & -Mx_i \le y_i \le Mx_i, \quad \forall i \in [n] \\ & x \in \{0,1\}^n, \ y \in \mathbb{R}^n_+ \end{split} \tag{Big-M}$$

Highly depends on the selection of M and poor relaxation quality.

ELE SOC

$$\min_{x,y} a'x + b'y + y'Qy \text{s.t.} \quad -Mx_i \le y_i \le Mx_i, \quad \forall i \in [n] \\ x \in \{0,1\}^n, \ y \in \mathbb{R}^n_+$$
 (Big-M)

Highly depends on the selection of M and poor relaxation quality.

Approach: construct strong convex relaxations of (MIO).

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>

When Q is PSD and diagonal, the problem is separable.

$$\min_{\substack{x,y \\ x,y}} \sum_{i \in [n]} a_i x_i + b_i y_i + Q_{ii} y_i^2$$

s.t. $y_i (1 - x_i) = 0, \quad \forall i \in [n]$
 $x \in \{0,1\}^n, \ y \in \mathbb{R}^n_+,$

ELE NOR

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

When Q is PSD and diagonal, the problem is separable.

$$\begin{split} \min_{x,y} & \sum_{i \in [n]} a_i x_i + b_i y_i + Q_{ii} y_i^2 / x_i \\ \text{s.t.} & x \in [0,1]^n, \ y \in \mathbb{R}^n_+, \end{split}$$

where 0/0 = 0 and $a/0 = +\infty$ when $a \neq 0$.

Shaoning Han (USC)

SDPs for mixed-integer QCQPs

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

When Q is PSD and diagonal, the problem is separable.

$$\begin{split} \min_{x,y} & \sum_{i \in [n]} a_i x_i + b_i y_i + Q_{ii} y_i^2 / x_i \\ \text{s.t.} & x \in [0,1]^n, \ y \in \mathbb{R}^n_+, \end{split}$$

where 0/0 = 0 and $a/0 = +\infty$ when $a \neq 0$.

Ideal formulation!

Perspective reformulation

When (MIO) is not separable, introduce $Y \approx yy'$

$$\begin{array}{l} \min a'x + b'y + \langle Q, Y \rangle \\ \text{s.t. } Y \succeq yy' \\ y_i^2 \leq Y_{ii}x_i \quad \forall i \in [n] \\ 0 \leq x \leq 1 \\ y \geq 0, \end{array}$$
 (Persp)

where $Y \in \mathbb{R}^{n \times n}$.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Perspective reformulation

When (MIO) is not separable, introduce $Y \approx yy'$

$$\begin{array}{l} \min a'x + b'y + \langle Q, Y \rangle \\ \text{s.t.} \quad Y \succeq yy' \\ y_i^2 \leq Y_{ii}x_i \quad \forall i \in [n] \\ 0 \leq x \leq 1 \\ y \geq 0, \end{array} \tag{Persp}$$

where $Y \in \mathbb{R}^{n \times n}$.

However, when Q deviates from diagonal, the performance deteriorates.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Standard semidefinite programming reformulation

Introduce
$$Z \approx \begin{pmatrix} y \\ x \end{pmatrix} \begin{pmatrix} y' & x' \end{pmatrix}$$
,

$$\min a'x + b'y + \sum_{i=1}^{n} \sum_{j=1}^{n} Q_{ij}Z_{ij}$$
s.t. $y_i - Z_{i,i+n} = 0 \qquad \forall i \in [n]$
 $x_i - Z_{i+n,i+n} = 0 \qquad \forall i \in [n]$
 $Z - \begin{pmatrix} y \\ x \end{pmatrix} (y' \ x') \succeq 0$
 $0 \le x \le 1.$

$$(SDP_s)$$

Image: A matrix

EL SQA

Standard semidefinite programming reformulation

Introduce
$$Z \approx \begin{pmatrix} y \\ x \end{pmatrix} \begin{pmatrix} y' & x' \end{pmatrix}$$
,

$$\min a'x + b'y + \sum_{i=1}^{n} \sum_{j=1}^{n} Q_{ij}Z_{ij}$$
s.t. $y_i - Z_{i,i+n} = 0 \qquad \forall i \in [n]$
 $x_i - Z_{i+n,i+n} = 0 \qquad \forall i \in [n]$
 $Z - \begin{pmatrix} y \\ x \end{pmatrix} (y' \quad x') \succeq 0$
 $0 \le x \le 1.$

- max-cut problem (Goemans and Williamson 1995)
- matrix completion (Candes and Plan 2010)

Shaoning Han (USC)

...

ELE NOR

Which one is stronger among PR and Standard SDP?

Which one is stronger among PR and Standard SDP?

PR:

r

min
$$a'x + b'y + \langle Q, Y \rangle$$

s.t. $\begin{pmatrix} 1 & y_1 & y_2 \\ y_1 & Y_{11} & Y_{12} \\ y_2 & Y_{12} & Y_{22} \end{pmatrix} \succeq 0$
 $y_1^2 \leq Y_{11}x_1, \ y_2^2 \leq Y_{22}x_2$
 $x \in [0, 1]^2, y \in \mathbb{R}^2_+$

$$\begin{array}{l} \min a'x + b'y + \langle Q, Y \rangle \\ \text{s.t.} \begin{pmatrix} 1 & y_1 & y_2 & x_1 & x_2 \\ y_1 & Y_{11} & Y_{12} & y_1 & Z_{14} \\ y_2 & Y_{12} & Y_{22} & Z_{23} & y_2 \\ x_1 & y_1 & Z_{23} & x_1 & Z_{34} \\ x_2 & Z_{14} & y_2 & Z_{34} & x_2 \end{pmatrix} \succeq 0 \\ y_1^2 \leq Y_{11}x_1, \ y_2^2 \leq Y_{22}x_2 \\ x \in [0, 1]^2, y \in \mathbb{R}^2_+ \end{array}$$

SPD_s:

Which one is stronger among PR and Standard SDP?

PR:

min
$$a'x + b'y + \langle Q, Y \rangle$$

s.t. $\begin{pmatrix} 1 & y_1 & y_2 \\ y_1 & Y_{11} & Y_{12} \\ y_2 & Y_{12} & Y_{22} \end{pmatrix} \succeq 0$
 $y_1^2 \leq Y_{11}x_1, \ y_2^2 \leq Y_{22}x_2$
 $x \in [0, 1]^2, y \in \mathbb{R}^2_+$

$$\begin{array}{l} \min \, a'x + b'y + \langle Q, Y \rangle \\ \text{s.t.} & \begin{pmatrix} 1 & y_1 & y_2 & x_1 & x_2 \\ y_1 & Y_{11} & Y_{12} & y_1 & Z_{14} \\ y_2 & Y_{12} & Y_{22} & Z_{23} & y_2 \\ x_1 & y_1 & Z_{23} & x_1 & Z_{34} \\ x_2 & Z_{14} & y_2 & Z_{34} & x_2 \end{pmatrix} \succeq 0 \\ & y_1^2 \leq Y_{11}x_1, \ y_2^2 \leq Y_{22}x_2 \\ & x \in [0,1]^2, y \in \mathbb{R}^2_+ \end{array}$$

SPD_s:

Which one is stronger among PR and Standard SDP?

PR:

min
$$a'x + b'y + \langle Q, Y \rangle$$

s.t. $\begin{pmatrix} 1 & y_1 & y_2 \\ y_1 & Y_{11} & Y_{12} \\ y_2 & Y_{12} & Y_{22} \end{pmatrix} \succeq 0$
 $y_1^2 \leq Y_{11}x_1, y_2^2 \leq Y_{22}x_2$
 $x \in [0, 1]^2, y \in \mathbb{R}^2_+$

$$\begin{array}{l} \min a'x + b'y + \langle Q, Y \rangle \\ \text{s.t.} & \begin{pmatrix} 1 & y_1 & y_2 & x_1 & x_2 \\ y_1 & Y_{11} & Y_{12} & y_1 & Z_{14} \\ y_2 & Y_{12} & Y_{22} & Z_{23} & y_2 \\ x_1 & y_1 & Z_{23} & x_1 & Z_{34} \\ x_2 & Z_{14} & y_2 & Z_{34} & x_2 \end{pmatrix} \succeq 0 \\ & y_1^2 \leq Y_{11}x_1, \ y_2^2 \leq Y_{22}x_2 \\ & x \in [0, 1]^2, y \in \mathbb{R}^2_+ \end{array}$$

 $PR \Longrightarrow SDP_s$

SPD_s:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Which one is stronger among PR and Standard SDP?

PR:

min
$$a'x + b'y + \langle Q, Y \rangle$$

s.t. $\begin{pmatrix} 1 & y_1 & y_2 \\ y_1 & Y_{11} & Y_{12} \\ y_2 & Y_{12} & Y_{22} \end{pmatrix} \succeq 0$
 $y_1^2 \leq Y_{11}x_1, y_2^2 \leq Y_{22}x_2$
 $x \in [0, 1]^2, y \in \mathbb{R}^2_+$

min
$$a'x + b'y + \langle Q, Y \rangle$$

s.t.
$$\begin{pmatrix} 1 & y_1 & y_2 & x_1 & x_2 \\ y_1 & Y_{11} & Y_{12} & y_1 & Z_{14} \\ y_2 & Y_{12} & Y_{22} & Z_{23} & y_2 \\ x_1 & y_1 & Z_{23} & x_1 & Z_{34} \\ x_2 & Z_{14} & y_2 & Z_{34} & x_2 \end{pmatrix} \succeq 0$$

$$y_1^2 \leq Y_{11}x_1, y_2^2 \leq Y_{22}x_2$$

$$x \in [0, 1]^2, y \in \mathbb{R}^2_+$$

Proposition

(PR) is equivalent to (SDP_s) .

Shaoning Han (USC)

SDPs for mixed-integer QCQPs

SPD_s:

r

November, 2020 8/17

Quadratic constraint with two indicators:

 $X_{+} = \left\{ (x, y, t) \in \{0, 1\}^{2} \times \mathbb{R}^{3}_{+} : t \geq d_{1}y_{1}^{2} + 2y_{1}y_{2} + d_{2}y_{2}^{2}, (1 - x) \circ y = 0 \right\},\$

where $d_1 > 0, d_2 > 0, d_1 d_2 \ge 1$.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Shaoning Han (USC)

Quadratic constraint with two indicators:

 $X_{+} = \left\{ (x, y, t) \in \{0, 1\}^{2} \times \mathbb{R}^{3}_{+} : t \geq d_{1}y_{1}^{2} + 2y_{1}y_{2} + d_{2}y_{2}^{2}, (1 - x) \circ y = 0 \right\},$

where $d_1 > 0, d_2 > 0, d_1 d_2 \ge 1$. Define

$$\begin{split} f^*_+(x,y;d) &:= \min_{z,\lambda} \frac{d_1}{x_1 - \lambda} (y_1 - z_1)^2 + \frac{d_2}{x_2 - \lambda} (y_2 - z_2)^2 + \frac{d_1 z_1^2 + 2 z_1 z_2 + d_2 z_2^2}{\lambda} \\ &\text{s.t.} \quad z_1 \geq 0, z_2 \geq 0 \\ &\max\{0, x_1 + x_2 - 1\} \leq \lambda \leq \min\{x_1, x_2\}. \end{split}$$

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Quadratic constraint with two indicators:

 $X_+ = \left\{ (x, y, t) \in \{0, 1\}^2 imes \mathbb{R}^3_+ : t \ge d_1 y_1^2 + 2y_1 y_2 + d_2 y_2^2, (1 - x) \circ y = 0 \right\},$

where $d_1 > 0, d_2 > 0, d_1 d_2 \ge 1$. Define

$$\begin{split} f^*_+(x,y;d) &:= \min_{z,\lambda} \frac{d_1}{x_1 - \lambda} (y_1 - z_1)^2 + \frac{d_2}{x_2 - \lambda} (y_2 - z_2)^2 + \frac{d_1 z_1^2 + 2 z_1 z_2 + d_2 z_2^2}{\lambda} \\ &\text{s.t.} \quad z_1 \geq 0, z_2 \geq 0 \\ &\max\{0, x_1 + x_2 - 1\} \leq \lambda \leq \min\{x_1, x_2\}. \end{split}$$

Proposition

$${\sf conv}(X_+) = \left\{ (x,y,t) \in [0,1]^2 imes \mathbb{R}^3_+ : t \ge f^*_+(x,y;d) \right\}.$$

Shaoning Han (USC)

SDPs for mixed-integer QCQPs

November, 2020 9 / 17

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Quadratic constraint with two indicators:

 $X_+ = \left\{ (x, y, t) \in \{0, 1\}^2 imes \mathbb{R}^3_+ : t \ge d_1 y_1^2 + 2y_1 y_2 + d_2 y_2^2, (1 - x) \circ y = 0 \right\},$

where $d_1 > 0, d_2 > 0, d_1 d_2 \ge 1$. Define

$$\begin{split} f^*_+(x,y;d) &:= \min_{z,\lambda} \frac{d_1}{x_1 - \lambda} (y_1 - z_1)^2 + \frac{d_2}{x_2 - \lambda} (y_2 - z_2)^2 + \frac{d_1 z_1^2 + 2 z_1 z_2 + d_2 z_2^2}{\lambda} \\ &\text{s.t.} \quad z_1 \geq 0, z_2 \geq 0 \\ &\max\{0, x_1 + x_2 - 1\} \leq \lambda \leq \min\{x_1, x_2\}. \end{split}$$

Proposition

$$\operatorname{conv}(X_+) = \left\{ (x, y, t) \in [0, 1]^2 \times \mathbb{R}^3_+ : t \ge f^*_+(x, y; d) \right\}.$$

We also provide a description of $f_+^*(\cdot)$ in the original space of variables.

Shaoning Han (USC)

SDPs for mixed-integer QCQPs

November, 2020 9 / 17

ELE DOO

Quadratic constraint with two indicators:

 $X_+ = \left\{ (x, y, t) \in \{0, 1\}^2 imes \mathbb{R}^3_+ : t \ge d_1 y_1^2 + 2y_1 y_2 + d_2 y_2^2, (1 - x) \circ y = 0 \right\},$

where $d_1 > 0, d_2 > 0, d_1 d_2 \ge 1$. Define

$$\begin{split} f^*_+(x,y;d) &:= \min_{z,\lambda} \frac{d_1}{x_1 - \lambda} (y_1 - z_1)^2 + \frac{d_2}{x_2 - \lambda} (y_2 - z_2)^2 + \frac{d_1 z_1^2 + 2 z_1 z_2 + d_2 z_2^2}{\lambda} \\ &\text{s.t.} \quad z_1 \geq 0, z_2 \geq 0 \\ &\max\{0, x_1 + x_2 - 1\} \leq \lambda \leq \min\{x_1, x_2\}. \end{split}$$

Proposition

$$\operatorname{conv}(X_+) = \left\{ (x, y, t) \in [0, 1]^2 \times \mathbb{R}^3_+ : t \ge f^*_+(x, y; d) \right\}.$$

Inequality $t \ge f_+^*(\cdot)$ is SOCP-representable in lifted space

Shaoning Han (USC)

SDPs for mixed-integer QCQPs

November, 2020 9 / 17

When Q is 2 \times 2 decomposable,

$$y'Qy = \sum_{i \in [n]} D_{ii}y_i^2 + \sum_{i \neq j} c_{ij}(d_1^{ij}y_i^2 + 2y_iy_j + d_2^{ij}y_j^2),$$

JOC ELE

b 4 F

Image: A matrix

When Q is 2×2 decomposable,

$$y'Qy = \sum_{i \in [n]} D_{ii}y_i^2 + \sum_{i \neq j} c_{ij}(d_1^{ij}y_i^2 + 2y_iy_j + d_2^{ij}y_j^2),$$

min a'x + b'y + y'Qy

b 4 T

When Q is 2×2 decomposable,

$$y'Qy = \sum_{i \in [n]} D_{ii}y_i^2 + \sum_{i \neq j} c_{ij}(d_1^{ij}y_i^2 + 2y_iy_j + d_2^{ij}y_j^2),$$

min
$$a'x + b'y + y'Qy$$

 $\Rightarrow \min a'x + b'y + \sum_{i=1}^{n} D_{ii} \frac{y_i^2}{x_i} + b'y + \sum_{i=1}^{n} D_{ii} \frac{y_i^2}{x_i} + b'y + b'$

Shaoning Han (USC)

SDPs for mixed-integer QCQPs

November, 2020 10 / 17

JOC ELE

b 4 F

Image: A matrix

When Q is 2×2 decomposable,

$$y'Qy = \sum_{i \in [n]} D_{ii}y_i^2 + \sum_{i \neq j} c_{ij}(d_1^{ij}y_i^2 + 2y_iy_j + d_2^{ij}y_j^2),$$

$$\min a'x + b'y + y'Qy$$

$$\Rightarrow \min a'x + b'y + \sum_{i=1}^{n} D_{ii} \frac{y_i^2}{x_i} + \sum_{i \neq j} c_{ij} f_+^*(x_{i,j}, y_{i,j}; d^{ij}),$$

where $x_{i,j} = (x_i, x_j)$ and $y_{i,j} = (y_i, y_j)$

When Q is 2×2 decomposable,

$$y'Qy = \sum_{i \in [n]} D_{ii}y_i^2 + \sum_{i \neq j} c_{ij}(d_1^{ij}y_i^2 + 2y_iy_j + d_2^{ij}y_j^2),$$

$$\min a'x + b'y + y'Qy$$

$$\Rightarrow \min a'x + b'y + \sum_{i=1}^{n} D_{ii} \frac{y_i^2}{x_i} + \sum_{i \neq j} c_{ij} f_+^*(x_{i,j}, y_{i,j}; d^{ij}),$$

where $x_{i,j} = (x_i, x_j)$ and $y_{i,j} = (y_i, y_j)$

Issue:

• There are potentially infinite ways to decompose Q!

When Q is 2×2 decomposable,

$$y'Qy = \sum_{i \in [n]} D_{ii}y_i^2 + \sum_{i \neq j} c_{ij}(d_1^{ij}y_i^2 + 2y_iy_j + d_2^{ij}y_j^2),$$

$$\min a'x + b'y + y'Qy$$

$$\Rightarrow \min a'x + b'y + \sum_{i=1}^{n} D_{ii} \frac{y_i^2}{x_i} + \sum_{i \neq j} c_{ij} f_+^*(x_{i,j}, y_{i,j}; d^{ij}),$$

where $x_{i,j} = (x_i, x_j)$ and $y_{i,j} = (y_i, y_j)$

Issue:

- There are potentially infinite ways to decompose Q!
- What if Q is not 2×2 decomposable?

Shaoning Han (USC)

SDPs for mixed-integer QCQPs

November, 2020 10 / 17

ELE SQC

In general, introduce $Y \approx yy'$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

In general, introduce $Y \approx yy'$

$$\begin{array}{l} \min a'x + b'y + \langle Q, Y \rangle \\ \text{s.t.} \quad Y \succeq yy' \\ \quad Y_{ii}x_i \ge y_i^2 \quad \forall i \in [n] \\ \quad f_+^*(x_{i,j}, y_{i,j}, d^{i,j}) - (d_1^{ij}Y_{ii} + 2Y_{ij} + d_2^{ij}Y_{jj}) \le 0 \quad \forall i \neq j \\ \quad x \in [0, 1]^n \end{array}$$

Valid for all $d^{ij}>0$ such that $d_1^{ij}d_2^{ij}\geq 1!$ ightarrow

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

In general, introduce $Y \approx yy'$

$$\begin{array}{l} \min a'x + b'y + \langle Q, Y \rangle \\ \text{s.t. } Y \succeq yy' \\ Y_{ii}x_i \ge y_i^2 \quad \forall i \in [n] \\ f_+^*(x_{i,j}, y_{i,j}, d^{i,j}) - (d_1^{ij}Y_{ii} + 2Y_{ij} + d_2^{ij}Y_{jj}) \le 0 \quad \forall i \neq j \\ x \in [0, 1]^n \end{array}$$

Valid for all $d^{ij} > 0$ such that $d_1^{ij} d_2^{ij} \geq 1! \rightarrow$ Take max

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

In general, introduce $Y \approx yy'$

$$\begin{array}{l} \min a'x + b'y + \langle Q, Y \rangle \\ \text{s.t.} \quad Y \succeq yy' \\ Y_{ii}x_i \ge y_i^2 \quad \forall i \in [n] \\ \max_{d > 0, d_1 d_2 > 1} f_+^*(x_{i,j}, y_{i,j}, d^{i,j}) - (d_1^{ij}Y_{ii} + 2Y_{ij} + d_2^{ij}Y_{jj}) \le 0 \quad \forall i \neq j \\ x \in [0, 1]^n \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

In general, introduce $Y \approx yy'$

$$\begin{array}{l} \min a'x + b'y + \langle Q, Y \rangle \\ \text{s.t.} \quad Y \succeq yy' \\ Y_{ii}x_i \ge y_i^2 \quad \forall i \in [n] \\ \max_{d > 0, d_1 d_2 > 1} f_+^*(x_{i,j}, y_{i,j}, d^{i,j}) - (d_1^{ij}Y_{ii} + 2Y_{ij} + d_2^{ij}Y_{jj}) \le 0 \quad \forall i \neq j \\ x \in [0, 1]^n \end{array}$$

Proposition

Above formulation is a valid convex relaxation of (MIO).

Shaoning Han (USC)

SDPs for mixed-integer QCQPs

November, 2020 11 / 17

In general, introduce $Y \approx yy'$

$$\begin{array}{l} \min a'x + b'y + \langle Q, Y \rangle \\ \text{s.t.} \quad Y \succeq yy' \\ Y_{ii}x_i \ge y_i^2 \quad \forall i \in [n] \\ \max_{d > 0, d_1 d_2 > 1} f_+^*(x_{i,j}, y_{i,j}, d^{i,j}) - (d_1^{ij}Y_{ii} + 2Y_{ij} + d_2^{ij}Y_{jj}) \le 0 \quad \forall i \neq j \\ x \in [0, 1]^n \end{array}$$

Proposition

Above formulation is a valid convex relaxation of (MIO).

cutting surface?

Shaoning Han (USC)

Valid inequality implementation

Proposition

The following formulation is a valid convex relaxation of (MIO) and is stronger than $Persp/SDP_s$.

$$\begin{array}{ll} \min a'x + b'y + \langle Q, Y \rangle \\ s.t. \ Y - yy' \succeq 0 \\ W^{(ij)} \succeq 0 & \forall i > j \\ W^{(ij)}_{12} = Y_{ij} & \forall i > j \\ (Y_{ii} - W^{(ij)}_{11})(x_i - W^{(ij)}_{33}) \ge (y_i - W^{(ij)}_{31})^2, W^{(ij)}_{11} \le Y_{ii}, W^{(ij)}_{33} \le x_i \quad \forall i > j \\ (Y_{jj} - W^{(ij)}_{22})(x_j - W^{(ij)}_{33}) \ge (y_j - W^{(ij)}_{32})^2, W^{(ij)}_{22} \le Y_{jj}, W^{(ij)}_{33} \le x_j \quad \forall i > j \\ 0 \le W^{(ij)}_{31} \le y_i, 0 \le W^{(ij)}_{32} \le y_j & \forall i > j \\ W^{(ij)}_{33} \ge x_i + x_j - 1 & \forall i > j \\ 0 \le x_i \le 1 & \forall i \end{array}$$

315

・ロト ・四ト ・ヨト

Valid inequality implementation

Proposition

The following formulation is a valid convex relaxation of (MIO) and is stronger than Persp/SDP_s.

$$\begin{array}{ll} \min a'x + b'y + \langle Q, Y \rangle \\ s.t. \ Y - yy' \succeq 0 \\ W^{(ij)} \succeq 0 & \forall i > j \\ W^{(ij)}_{12} = Y_{ij} & \forall i > j \\ (Y_{ii} - W^{(ij)}_{11})(x_i - W^{(ij)}_{33}) \ge (y_i - W^{(ij)}_{31})^2, W^{(ij)}_{11} \le Y_{ii}, W^{(ij)}_{33} \le x_i \quad \forall i > j \\ (Y_{jj} - W^{(ij)}_{22})(x_j - W^{(ij)}_{33}) \ge (y_j - W^{(ij)}_{32})^2, W^{(ij)}_{22} \le Y_{jj}, W^{(ij)}_{33} \le x_j \quad \forall i > j \\ 0 \le W^{(ij)}_{31} \le y_i, 0 \le W^{(ij)}_{32} \le y_j & \forall i > j \\ W^{(ij)}_{33} \ge x_i + x_j - 1 & \forall i > j \\ 0 \le x_i \le 1 & \forall i \end{array}$$

* 曰 > * 個 > * 문 > * 문 > . 문 =

Example

For n = 2, the instance of (MIO) with

$$a = \begin{pmatrix} 1 \\ 5 \end{pmatrix}, b = \begin{pmatrix} -8 \\ -5 \end{pmatrix}, Q = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$$

Optimal solution

	obj val	<i>x</i> ₁	<i>x</i> ₂	<i>y</i> ₁	<i>y</i> ₂
Persp	-2.866	0.049	0.268	0.208	1.369
SDP_s	-2.866	0.049	0.268	0.208	1.369

Example

For n = 2, the instance of (MIO) with

$$a = \begin{pmatrix} 1 \\ 5 \end{pmatrix}, b = \begin{pmatrix} -8 \\ -5 \end{pmatrix}, Q = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$$

Optimal solution

	obj val	<i>x</i> ₁	<i>x</i> ₂	<i>y</i> ₁	<i>y</i> ₂
Persp	-2.866	0.049	0.268	0.208	1.369
SDP₅	-2.866	0.049	0.268	0.208	1.369
SDP_{p}	-2.200	1.0	0.0	0.800	0.0

Example

For n = 2, the instance of (MIO) with

$$a = \begin{pmatrix} 1 \\ 5 \end{pmatrix}, b = \begin{pmatrix} -8 \\ -5 \end{pmatrix}, Q = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$$

Optimal solution

	obj val	<i>x</i> ₁	<i>x</i> ₂	<i>y</i> ₁	<i>y</i> ₂
Persp	-2.866	0.049	0.268	0.208	1.369
SDP₅	-2.866	0.049	0.268	0.208	1.369
SDPp	-2.200	1.0	0.0	0.800	0.0

Example

For n = 2, the instance of (MIO) with

$$a = \begin{pmatrix} 1 \\ 5 \end{pmatrix}, b = \begin{pmatrix} -8 \\ -5 \end{pmatrix}, Q = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$$

Optimal solution

	obj val	<i>x</i> ₁	<i>x</i> ₂	<i>y</i> ₁	<i>y</i> ₂
Persp	-2.866	0.049	0.268	0.208	1.369
SDP₅	-2.866	0.049	0.268	0.208	1.369
SDP_{p}	-2.200	1.0	0.0	0.800	0.0

SDP_p delivers the optimal solution!

Computational experiment

Consider portfolio index tracking problem of the form

$$\begin{split} \min_{x,y} & (y - y_B)' Q(y - y_B) \\ \text{s.t.} & 1'y = 1, 1'x \leq k \\ & 0 \leq y \leq x, x \in \{0,1\}^n \end{split}$$

- $y_B \in \mathbb{R}^n$ is a benchmark index portfolio
- Q is the covariance matrix of security returns
- k is the maximum number of securities in the portfolio

ELE SQC

Distribution of gaps for OptPersp and OptPairs

OptPersp: application of Persp

OptPairs: application of our new relaxation

(A) Data since 2010. OptPersp 19.1% v.s. OptPairs 4.2%

(B) Data since 2015. OptPersp 50.1% v.s. OptPairs 15.5%

< 47 ▶

Shaoning Han (USC)

SDPs for mixed-integer QCQPs

November, 2020 15 / 17

ELE SQC

A B < A B </p>

Distribution of gaps for OptPersp and OptPairs

OptPersp: application of Persp

OptPairs: application of our new relaxation

(A) Data since 2010. OptPersp 19.1% v.s. OptPairs 4.2%

(B) Data since 2015. OptPersp 50.1% v.s. OptPairs 15.5%

• When $n \leq 150$, $T_{\text{OptPairs}} \leq 6 \text{min}$

Shaoning Han (USC)

SDPs for mixed-integer QCQPs

November, 2020 15 / 17

ELE NOR

• 3 • 4 5

Distribution of gaps for OptPersp and OptPairs

OptPersp: application of Persp

OptPairs: application of our new relaxation

(A) Data since 2010. OptPersp 19.1% v.s. OptPairs 4.2%

(B) Data since 2015. OptPersp 50.1% v.s. OptPairs 15.5%

< 47 ▶

• When
$$n \leq 150$$
, $T_{OptPairs} \leq 6min$

•
$$T_{\text{OptPairs}} / T_{\text{OptPersp}} \approx 2 \rightarrow$$

Shaoning Han (USC) S

SDPs for mixed-integer QCQPs

November, 2020 15 / 17

ELE SQC

A B < A B </p>

Distribution of gaps for OptPersp and OptPairs

OptPersp: application of Persp

OptPairs: application of our new relaxation

(A) Data since 2010. OptPersp 19.1% v.s. OptPairs 4.2%

(B) Data since 2015. OptPersp 50.1% v.s. OptPairs 15.5%

• When $n \leq 150$, $T_{\text{OptPairs}} \leq 6 \text{min}$

• $T_{\text{OptPairs}}/T_{\text{OptPersp}} \approx 2 \rightarrow \text{The factor is not affected by the dimension} n!$ $\Im \land \Im$ Shaoning Han (USC) SDPs for mixed-integer QCQPs November, 2020 15/17

• Optimal perspective reformulation \iff standard SDP relaxation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Optimal perspective reformulation \iff standard SDP relaxation
- A new convex formulation stronger than PR/standard SDP

ELE SQC

< 日 > < 同 > < 回 > < 回 > < 回 > <

- Optimal perspective reformulation \iff standard SDP relaxation
- A new convex formulation stronger than PR/standard SDP
- Better performance in practice!

ELE SQC

- Optimal perspective reformulation \iff standard SDP relaxation
- A new convex formulation stronger than PR/standard SDP
- Better performance in practice!

Our paper is available at:

www.optimization-online.org/DB_HTML/2020/04/7746.html

ELE DOG

Thank You!

Shaoning Han (USC)

SDPs for mixed-integer QCQPs

November, 2020 17 / 17

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Bach, F. (2016). Submodular functions: from discrete to continuous domains. Mathematical Programming, pages 1-41.
- Bienstock, D. (1996). Computational study of a family of mixed-integer quadratic programming problems. Mathematical Programming, 74(2):121–140.
- Candes, E. J. and Plan, Y. (2010). Matrix completion with noise. Proceedings of the IEEE, 98(6):925-936.
- Gao, J. and Li, D. (2011). Cardinality constrained linear-quadratic optimal control. IEEE Transactions on Automatic Control, 56(8):1936–1941.
- Goemans, M. X. and Williamson, D. P. (1995). Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM (JACM), 42(6):1115–1145.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ