Compact Formulations for Low-rank Functions with Indicator Variables

Shaoning Han

Department of Industrial \& Systems Engineering University of Southern California
shaoning@usc.edu

INFORMS Annual Meeting, October 2023

Agenda

(1) Introduction
(2) Main results - convex hull description
(3) Conclusions

Authors

Shaoning Han
Postdoctoral Researcher ISE, USC

Andres Gomez
Assistant Professor ISE, USC

Introduction

Consider

$$
\begin{aligned}
\min _{x, z} & \sum_{k} f_{k}(x)+a^{\top} x+c^{\top} z \\
\text { s.t. } & x_{i}\left(1-z_{i}\right)=0, z_{i} \in\{0,1\} \\
& x_{i} \geq 0
\end{aligned}
$$

other constraints on (x, z),
where each f_{k} is convex.

Introduction

Consider

$$
\begin{aligned}
\min _{x, z} & \sum_{k} f_{k}(x)+a^{\top} x+c^{\top} z \\
\text { s.t. } & x_{i}\left(1-z_{i}\right)=0, z_{i} \in\{0,1\} \\
& x_{i} \geq 0
\end{aligned}
$$

other constraints on (x, z),
where each f_{k} is convex.

- On/off constraints: $z_{i}=0 \Rightarrow x_{i}=0$

Introduction

Consider

$$
\begin{aligned}
\min _{x, z} & \sum_{k} f_{k}(x)+a^{\top} x+c^{\top} z \\
\text { s.t. } & x_{i}\left(1-z_{i}\right)=0, z_{i} \in\{0,1\} \\
& x_{i} \geq 0
\end{aligned}
$$

other constraints on (x, z),
where each f_{k} is convex.

- On/off constraints: $z_{i}=0 \Rightarrow x_{i}=0$

Introduction

Consider

$$
\begin{aligned}
\min _{x, z} & \sum_{k} f_{k}(x)+a^{\top} x+c^{\top} z \\
\text { s.t. } & x_{i}\left(1-z_{i}\right)=0, z_{i} \in\{0,1\} \\
& x_{i} \geq 0
\end{aligned}
$$

other constraints on (x, z),
where each f_{k} is convex.

- On/off constraints: $z_{i}=0 \Rightarrow x_{i}=0$
- Nonconvex and $\mathcal{N} \mathcal{P}$-hard

Introduction

Consider

$$
\begin{aligned}
& \min _{x, z} \sum_{k} f_{k}(x)+a^{\top} x+c^{\top} z \\
& \text { s.t. } x_{i}\left(1-z_{i}\right)=0, z_{i} \in\{0,1\} \\
& x_{i} \geq 0 \\
& \begin{array}{r}
\forall i \in[n] \\
\forall i \in \mathcal{I}_{+} \subseteq[n]
\end{array}
\end{aligned}
$$

other constraints on (x, z),
where each f_{k} is convex.

- On/off constraints: $z_{i}=0 \Rightarrow x_{i}=0$
- Nonconvex and $\mathcal{N} \mathcal{P}$-hard

Assumption Each f_{k} is a low-rank closed convex function

Introduction

Assumption Each f_{k} is a low-rank closed convex function

Definition (Rank; Rockafellar (1970))

The rank of f is the smallest integer k such that $f(x)=g(A x)+c^{\top} x$ for some convex function $g: \mathbb{R}^{k} \rightarrow \mathbb{R}$ and matrix $A \in \mathbb{R}^{k \times n}$

Introduction

Assumption Each f_{k} is a low-rank closed convex function

Definition (Rank; Rockafellar (1970))

The rank of f is the smallest integer k such that $f(x)=g(A x)+c^{\top} x$ for some convex function $g: \mathbb{R}^{k} \rightarrow \mathbb{R}$ and matrix $A \in \mathbb{R}^{k \times n}$

Examples

- $f(x)=c^{\top} x$, then $\operatorname{rank}(f)=0$

Introduction

Assumption Each f_{k} is a low-rank closed convex function

Definition (Rank; Rockafellar (1970))

The rank of f is the smallest integer k such that $f(x)=g(A x)+c^{\top} x$ for some convex function $g: \mathbb{R}^{k} \rightarrow \mathbb{R}$ and matrix $A \in \mathbb{R}^{k \times n}$

Examples

- $f(x)=c^{\top} x$, then $\operatorname{rank}(f)=0$
- $f(x)=\log \left(\exp \left(a^{\top} x\right)+1\right)+c^{\top} x$, then $\operatorname{rank}(f)=1$

Introduction

Assumption Each f_{k} is a low-rank closed convex function

Definition (Rank; Rockafellar (1970))

The rank of f is the smallest integer k such that $f(x)=g(A x)+c^{\top} x$ for some convex function $g: \mathbb{R}^{k} \rightarrow \mathbb{R}$ and matrix $A \in \mathbb{R}^{k \times n}$

Examples

- $f(x)=c^{\top} x$, then $\operatorname{rank}(f)=0$
- $f(x)=\log \left(\exp \left(a^{\top} x\right)+1\right)+c^{\top} x$, then $\operatorname{rank}(f)=1$
- $f(x)=g\left(a^{\top} x\right)+g\left(b^{\top} x\right)$, then $\operatorname{rank}(f)=2$

Introduction

Assumption Each f_{k} is a low-rank closed convex function

Definition (Rank; Rockafellar (1970))

The rank of f is the smallest integer k such that $f(x)=g(A x)+c^{\top} x$ for some convex function $g: \mathbb{R}^{k} \rightarrow \mathbb{R}$ and matrix $A \in \mathbb{R}^{k \times n}$

Examples

- $f(x)=c^{\top} x$, then $\operatorname{rank}(f)=0$
- $f(x)=\log \left(\exp \left(a^{\top} x\right)+1\right)+c^{\top} x$, then $\operatorname{rank}(f)=1$
- $f(x)=g\left(a^{\top} x\right)+g\left(b^{\top} x\right)$, then $\operatorname{rank}(f)=2$
- $f(x)=x^{\top} Q x+c^{\top} x$, then $\operatorname{rank}(f)=\operatorname{rank}(Q)$

Motivating application I - portfolio optimization

Portfolio index tracking problem Construct a portfolio of securities to reproduce the performance of a stock market index

$$
\begin{aligned}
& \min _{x, z}\left(x-x_{B}\right)^{\top} Q\left(x-x_{B}\right) \\
& \text { s.t. } x \geq 0, \sum_{i \in[n]} x_{i}=1 \\
& \quad\|x\|_{0} \leq m
\end{aligned}
$$

- $x_{B} \in \mathbb{R}^{n}$: benchmark index portfolio
- Q: covariance matrix of security returns
- m: maximum number of securities in the portfolio

Motivating application I - portfolio optimization

Portfolio index tracking problem Construct a portfolio of securities to reproduce the performance of a stock market index

$$
\begin{aligned}
& \min _{x, z}\left(x-x_{B}\right)^{\top} Q\left(x-x_{B}\right) \\
& \text { s.t. } x \geq 0, \sum_{i \in[n]} x_{i}=1 \\
& \quad\|x\|_{0} \leq m
\end{aligned}
$$

- $x_{B} \in \mathbb{R}^{n}$: benchmark index portfolio
- Q: covariance matrix of security returns
- m: maximum number of securities in the portfolio

Motivating application I - portfolio optimization

Portfolio index tracking problem Construct a portfolio of securities to reproduce the performance of a stock market index

$$
\begin{aligned}
& \min _{x, z}\left(x-x_{B}\right)^{\top} Q\left(x-x_{B}\right) \\
& \text { s.t. } x \geq 0, \sum_{i \in[n]} x_{i}=1 \\
& \quad\|x\|_{0} \leq m
\end{aligned}
$$

- $x_{B} \in \mathbb{R}^{n}$: benchmark index portfolio
- Q: covariance matrix of security returns
- m: maximum number of securities in the portfolio

Motivating application I - portfolio optimization

MIQP reformulation

$$
\begin{aligned}
& \min _{x, z}\left(x-x_{B}\right)^{\top} Q\left(x-x_{B}\right) \\
& \text { s.t. } \\
& \qquad \quad x \geq 0, \sum_{i \in[n]} x_{i}=1 \\
& \\
& \quad x_{i}\left(1-z_{i}\right)=0, \quad z_{i} \in\{0,1\} \forall i \in[n] \\
& \quad \sum_{i \in[n]} z_{i} \leq m
\end{aligned}
$$

- $z_{i}=0 \Rightarrow x_{i}=0$

Motivating application I - portfolio optimization

MIQP reformulation

$$
\begin{array}{ll}
\min _{x, z} & \left(x-x_{B}\right)^{\top} Q\left(x-x_{B}\right) \\
\text { s.t. } & x \geq 0, \sum_{i \in[n]} x_{i}=1 \\
& \quad x_{i}\left(1-z_{i}\right)=0, z_{i} \in\{0,1\} \forall i \in[n] \\
& \sum_{i \in[n]} z_{i} \leq m
\end{array}
$$

- $z_{i}=0 \Rightarrow x_{i}=0$

Motivating application I - portfolio optimization

MIQP reformulation

$$
\begin{aligned}
& \min _{x, z}\left(x-x_{B}\right)^{\top} Q\left(x-x_{B}\right) \\
& \text { s.t. } \\
& \qquad \quad x \geq 0, \sum_{i \in[n]} x_{i}=1 \\
& \\
& \quad x_{i}\left(1-z_{i}\right)=0, \quad z_{i} \in\{0,1\} \forall i \in[n] \\
& \quad \sum_{i \in[n]} z_{i} \leq m
\end{aligned}
$$

- $z_{i}=0 \Rightarrow x_{i}=0$

Motivating application I - portfolio optimization

MIQP reformulation

$$
\begin{aligned}
\min _{x, z} & \left(x-x_{B}\right)^{\top} Q\left(x-x_{B}\right) \\
\text { s.t. } & x \geq 0, \sum_{i \in[n]} x_{i}=1 \\
& x_{i}\left(1-z_{i}\right)=0, z_{i} \in\{0,1\} \forall i \in[n] \\
& \sum_{i \in[n]} z_{i} \leq m
\end{aligned}
$$

- $z_{i}=0 \Rightarrow x_{i}=0$
- Covariances are estimated from a factor model (Bienstock (1996))

$$
Q=F F^{\top}
$$

where $F \in \mathbb{R}^{n} \times \mathbb{R}^{k}, k \leq 20$ is small

Motivation application II - signal denoising

Signal denoising problem Given the noisy observations $c \in \mathbb{R}^{n}$ of a temporal process, consider

- Smooth
- Sparse
- Outliers

Motivation application II - signal denoising

Signal denoising problem Given the noisy observations $c \in \mathbb{R}^{n}$ of a temporal process, consider

$$
\min _{x, v, z, w} \sum_{i=1}^{n} \underbrace{\left(x_{i}-c_{i}\right)^{2}}_{\text {fitness }}+\Omega \sum_{i=\ell+1}^{n} \underbrace{\left(x_{i}-\sum_{j=1}^{\ell} \alpha^{j} x_{i-\ell+j-1}\right)^{2}}_{\text {smoothness }}
$$

s.t.

- x_{i} : true values of the signal
- c_{i} : noisy observations

Motivation application II - signal denoising

Signal denoising problem Given the noisy observations $c \in \mathbb{R}^{n}$ of a temporal process, consider

$$
\min _{x, v, z, w} \sum_{i=1}^{n} \underbrace{\left(x_{i} \quad-c_{i}\right)^{2}}_{\text {fitness }}+\Omega \sum_{i=\ell+1}^{n} \underbrace{\left(x_{i}-\sum_{j=1}^{\ell} a^{j} x_{i-\ell+j-1}\right)^{2}}_{\text {smoothness }}
$$

s.t.

- $\alpha=0.9$: decaying factor of proximity
- Ω : weight of smoothness

Motivation application II - signal denoising

Signal denoising problem Given the noisy observations $c \in \mathbb{R}^{n}$ of a temporal process, consider

$$
\begin{aligned}
& \min _{x, v, z, w} \sum_{i=1}^{n} \underbrace{\left(x_{i}-c_{i}\right)^{2}}_{\text {fitness }}+\Omega \sum_{i=\ell+1}^{n} \underbrace{\left(x_{i}-\sum_{j=1}^{\ell} \alpha^{j} x_{i-\ell+j-1}\right)^{2}}_{\text {smoothness }} \\
& \text { s.t. } x_{i}\left(1-z_{i}\right)=0, z_{i} \in\{0,1\} \forall i \in[n], \sum_{i=1}^{n} z_{i} \leq k_{1}
\end{aligned}
$$

- $\alpha=0.9$: decaying factor of proximity
- Ω : weight of smoothness

Motivation application II - signal denoising

Signal denoising problem Given the noisy observations $c \in \mathbb{R}^{n}$ of a temporal process, consider

$$
\begin{gathered}
\min _{x, v, z, w} \sum_{i=1}^{n} \underbrace{\left(x_{i}-v_{i}-c_{i}\right)^{2}}_{\text {fitness+robustness }}+\Omega \sum_{i=\ell+1}^{n} \underbrace{\left(x_{i}-\sum_{j=1}^{\ell} \alpha^{j} x_{i-\ell+j-1}\right)^{2}}_{\text {smoothness }} \\
\text { s.t. } x_{i}\left(1-z_{i}\right)=0, z_{i} \in\{0,1\} \forall i \in[n], \sum_{i=1}^{n} z_{i} \leq k_{1} \\
v_{i}\left(1-w_{i}\right)=0, w_{i} \in\{0,1\} \forall i \in[n], \sum_{i=1}^{n} w_{i} \leq k_{2}
\end{gathered}
$$

- $w_{i}=0: v_{i}=0 \Rightarrow c_{i}$ is not an outlier
- $w_{i}=1: x_{i}-v_{i}-c_{i}=0 \Rightarrow c_{i}$ is an outlier

Introduction

MINLP with low-rank structure

$$
\begin{aligned}
& \min _{x, z} \sum_{k} f_{k}(x)+a^{\top} x+c^{\top} z \\
& \text { s.t. } x_{i}\left(1-z_{i}\right)=0, z_{i} \in\{0,1\} \\
& x_{i} \geq 0 \\
& \forall i \in[n] \\
& \forall i \in \mathcal{I}_{+} \subseteq[n]
\end{aligned}
$$

other constraints on (x, z),
To solve it efficiently, we study

$$
\mathcal{Q}=\left\{(t, x, z) \in \mathbb{R}^{n+1} \times\{0,1\}^{n}: \begin{array}{rl}
t \geq f(x), x_{i} & \geq 0 \forall i \in \mathcal{I}_{+} \\
x_{i}\left(1-z_{i}\right) & =0 \forall i \in[n]
\end{array}\right\}
$$

Goal: Compute cl conv \mathcal{Q}

Literature review

Known cases for $\mathrm{cl} \operatorname{conv}(\mathcal{Q})$

$$
\mathcal{Q}=\left\{(t, x, z) \in \mathbb{R}^{n+1} \times\{0,1\}^{n}: \begin{array}{r}
t \geq f(x), x_{i} \geq 0 \forall i \in \mathcal{I}_{+} \\
x_{i}\left(1-z_{i}\right)=0 \forall i \in[n]
\end{array}\right\}
$$

- $k=\operatorname{rank}(f)$, Quad $=$ Quadratic, Conv $=$ General Convex

k or n	f	$\mathcal{I}_{+}=\emptyset(x$ free $)$	$\mathcal{I}_{+}=[n](x \geq 0)$	
	$n=1$		Ceria et al.(1999), Frangioni et al.(2006), Aktürk et al.(2009), etc.	
$k=1$	Quad	Atamtürk et al. (2019)	Atamtürk et al. (2023)	
	Conv	Wei et al. (2022)	Shafieezadeh-Abadeh et al. (2023)	
$n=2$	Quad	$?$	Han et al. (2023), De Rosa et al. (2023)	
	$k \geq 2$		$?$	$?$

Literature review

Known cases for $\operatorname{cl} \operatorname{conv}(\mathcal{Q})$

$$
\mathcal{Q}=\left\{(t, x, z) \in \mathbb{R}^{n+1} \times\{0,1\}^{n}: \begin{array}{r}
t \geq f(x), x_{i} \geq 0 \forall i \in \mathcal{I}_{+} \\
x_{i}\left(1-z_{i}\right)=0 \forall i \in[n]
\end{array}\right\}
$$

- $k=\operatorname{rank}(f)$, Quad $=$ Quadratic, Conv $=$ General Convex

k or n	f	$\mathcal{I}_{+}=\emptyset(x$ free $)$	$\mathcal{I}_{+}=[n](x \geq 0)$	
	$n=1$		Ceria et al.(1999), Frangioni et al.(2006), Aktürk et al.(2009), etc.	
$k=1$	Quad	Atamtürk et al. (2019)	Atamtürk et al. (2023)	
	Conv	Wei et al. (2022)	Shafieezadeh-Abadeh et al. (2023)	
$n=2$	Quad	\checkmark	Han et al. (2023), De Rosa et al. (2023)	
	$k \geq 2$		\checkmark	\checkmark

This work $\checkmark: \underbrace{\text { Compact }}_{\mathcal{O}\left(n^{k}\right)}$ description of $\operatorname{cl} \operatorname{conv}(\mathcal{Q})$ using disjunctive programming

Preliminaries: disjunctive programming

Assume one binary variable

$$
\mathcal{X} \subseteq \mathbb{R}^{2} \times\{0,1\}
$$

Preliminaries: disjunctive programming

Assume one binary variable

Preliminaries: disjunctive programming

Assume one binary variable

Convex hull of \mathcal{X}

Preliminaries: disjunctive programming

Assume one binary variable

Convex hull of \mathcal{X}

Preliminaries: disjunctive programming

Assume one binary variable

Convex hull of \mathcal{X}

Preliminaries: disjunctive programming

For any mixed-binary set $\mathcal{X} \subseteq \mathbb{R}^{m} \times\{0,1\}^{n}$,

$$
\mathcal{X}=\bigcup_{\bar{z} \in\{0,1\}^{n}}\left[\mathcal{X} \cap\left(\mathbb{R}^{m} \times\{\bar{z}\}\right)\right]
$$

- \# of disjunctions $=2^{n}$
- Disjunctive programming \Rightarrow describe conv \mathcal{X} in a lifted space $\#$ of additional vars $\approx \operatorname{dim}(\mathcal{X}) \times \#$ of disjunctions $=\mathcal{O}\left((n+m) 2^{n}\right)$
\Rightarrow Only applicable in practice for small n

Preliminaries: disjunctive programming

For any mixed-binary set $\mathcal{X} \subseteq \mathbb{R}^{m} \times\{0,1\}^{n}$,

$$
\mathcal{X}=\bigcup_{\bar{z} \in\{0,1\}^{n}}\left[\mathcal{X} \cap\left(\mathbb{R}^{m} \times\{\bar{z}\}\right)\right]
$$

- $\#$ of disjunctions $=2^{n}$
- Disjunctive programming \Rightarrow describe conv \mathcal{X} in a lifted space $\#$ of additional vars $\approx \operatorname{dim}(\mathcal{X}) \times \#$ of disjunctions $=\mathcal{O}\left((n+m) 2^{n}\right)$
\Rightarrow Only applicable in practice for small n
N / A to our setting:

$$
\mathcal{Q}=\left\{(t, x, z) \in \mathbb{R}^{n+1} \times\{0,1\}^{n}: \begin{array}{rl}
t \geq f(x), x_{i} & \geq 0 \forall i \in \mathcal{I}_{+} \\
x_{i}\left(1-z_{i}\right) & =0 \forall i \in[n]
\end{array}\right\}
$$

Agenda

(1) Introduction
(2) Main results - convex hull description

Homogeneous cases

Consider

$$
\mathcal{Q}=\left\{(t, x, z) \in \mathbb{R}^{n+1} \times\{0,1\}^{n}: \begin{array}{r}
t \geq f(x), x_{i} \geq 0 \forall i \in \mathcal{I}_{+} \\
x_{i}\left(1-z_{i}\right)
\end{array}\right\}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and $\mathcal{I}_{+} \subseteq[n]$

Homogeneous cases

Consider

$$
\mathcal{Q}=\left\{(t, x, z) \in \mathbb{R}^{n+1} \times\{0,1\}^{n}: \begin{array}{r}
t \geq f(x), x_{i} \geq 0 \forall i \in \mathcal{I}_{+} \\
x_{i}\left(1-z_{i}\right)
\end{array}\right\}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and $\mathcal{I}_{+} \subseteq[n]$

Proposition (Han and Gómez (2021))

If f is positively homogeneous, i.e. $f(\lambda x)=\lambda f(x)$ for all $\lambda \geq 0$, then

$$
\text { cl conv } \mathcal{Q}=\left\{(t, x, z) \in \mathbb{R}^{n+1} \times[0,1]^{n}: \begin{array}{r}
t \geq f(x), x_{i} \geq 0 \forall i \in \mathcal{I}_{+} \\
x_{1}(1 \\
z_{i}
\end{array}\right)=0 \quad\left[\begin{array}{ll}
n+1
\end{array}\right\} .
$$

New disjunctive representation in non-homogeneous cases

General (non-homogeneous) cases
Observe x_{i} and z_{i} are linked only through $x_{i}\left(1-z_{i}\right)=0$

New disjunctive representation in non-homogeneous cases

General (non-homogeneous) cases
Observe x_{i} and z_{i} are linked only through $x_{i}\left(1-z_{i}\right)=0$
\Rightarrow decompose \mathcal{Q} based on either $x_{i}=0$ or $z_{i}=1$

$$
\mathcal{Q}=\bigcup_{\mathcal{I} \subseteq[n]} \mathcal{Q} \cap\left\{(t, x, z): z_{i}=1 \forall i \in \mathcal{I}, x_{i}=0 \forall i \notin \mathcal{I}\right\}
$$

New disjunctive representation in non-homogeneous cases

General (non-homogeneous) cases
Observe x_{i} and z_{i} are linked only through $x_{i}\left(1-z_{i}\right)=0$
\Rightarrow decompose \mathcal{Q} based on either $x_{i}=0$ or $z_{i}=1$

$$
\begin{aligned}
\mathcal{Q} & =\bigcup_{\mathcal{I} \subseteq[n]} \mathcal{Q} \cap\left\{(t, x, z): z_{i}=1 \forall i \in \mathcal{I}, x_{i}=0 \forall i \notin \mathcal{I}\right\} \\
& =\bigcup_{\mathcal{I} \subseteq[n]} \underbrace{\left\{(t, x): t \geq f(x), x_{i}=0 \forall i \notin \mathcal{I}\right\}}_{\mathcal{X}(\mathcal{I})} \times \underbrace{\left\{z \in\{0,1\}^{n}: z_{i}=1 \forall i \in \mathcal{I}\right\}}_{\mathcal{Z}(\mathcal{I})}
\end{aligned}
$$

New disjunctive representation in non-homogeneous cases

General (non-homogeneous) cases
Observe x_{i} and z_{i} are linked only through $x_{i}\left(1-z_{i}\right)=0$
\Rightarrow decompose \mathcal{Q} based on either $x_{i}=0$ or $z_{i}=1$

$$
\begin{aligned}
\mathcal{Q} & =\bigcup_{\mathcal{I} \subseteq[n]} \mathcal{Q} \cap\left\{(t, x, z): z_{i}=1 \forall i \in \mathcal{I}, x_{i}=0 \forall i \notin \mathcal{I}\right\} \\
& =\bigcup_{\mathcal{I} \subseteq[n]}^{\left\{(t, x): t \geq f(x), x_{i}=0 \forall i \notin \mathcal{I}\right\}} \times \underbrace{\left\{z \in\{0,1\}^{n}: z_{i}=1 \forall i \in \mathcal{I}\right\}}_{\mathcal{X}(\mathcal{I})} \\
& =: \bigcup_{\mathcal{I} \subseteq[n]} \underbrace{\mathcal{X}(\mathcal{I}) \times \mathcal{Z}(\mathcal{I})}_{\mathcal{X}(\mathcal{I})}
\end{aligned}
$$

New disjunctive representation in non-homogeneous cases

General (non-homogeneous) cases
Observe x_{i} and z_{i} are linked only through $x_{i}\left(1-z_{i}\right)=0$
\Rightarrow decompose \mathcal{Q} based on either $x_{i}=0$ or $z_{i}=1$

$$
\begin{aligned}
\mathcal{Q} & =\bigcup_{\mathcal{I} \subseteq[n]} \mathcal{Q} \cap\left\{(t, x, z): z_{i}=1 \forall i \in \mathcal{I}, x_{i}=0 \forall i \notin \mathcal{I}\right\} \\
& =\bigcup_{\mathcal{I} \subseteq[n]}^{\left\{(t, x): t \geq f(x), x_{i}=0 \forall i \notin \mathcal{I}\right\}} \times \underbrace{\left\{z \in\{0,1\}^{n}: z_{i}=1 \forall i \in \mathcal{I}\right\}}_{\mathcal{X}(\mathcal{I})} \\
& =: \bigcup_{\mathcal{I} \subseteq[n]} \underbrace{\mathcal{X}(\mathcal{I}) \times \mathcal{Z}(\mathcal{I})}_{\mathcal{V}(\mathcal{I})}
\end{aligned}
$$

Note $\mathcal{X}(\mathcal{I})$ is convex and $\operatorname{conv} \mathcal{Z}(\mathcal{I})=\left\{z \in[0,1]^{n}: z_{i}=1 \forall i \in \mathcal{I}\right\}$

New disjunctive representation in non-homogeneous cases

General (non-homogeneous) cases
Observe x_{i} and z_{i} are linked only through $x_{i}\left(1-z_{i}\right)=0$
\Rightarrow decompose \mathcal{Q} based on either $x_{i}=0$ or $z_{i}=1$

$$
\begin{aligned}
\mathcal{Q} & =\bigcup_{\mathcal{I} \subseteq[n]} \mathcal{Q} \cap\left\{(t, x, z): z_{i}=1 \forall i \in \mathcal{I}, x_{i}=0 \forall i \notin \mathcal{I}\right\} \\
& =\bigcup_{\mathcal{I} \subseteq[n]}^{\left\{(t, x): t \geq f(x), x_{i}=0 \forall i \notin \mathcal{I}\right\}} \times \underbrace{\left\{z \in\{0,1\}^{n}: z_{i}=1 \forall i \in \mathcal{I}\right\}}_{\mathcal{X}(\mathcal{I})} \\
& =: \bigcup_{\mathcal{I} \subseteq[n]} \underbrace{\mathcal{X}(\mathcal{I}) \times \mathcal{Z}(\mathcal{I})}_{\mathcal{X}(\mathcal{I})}
\end{aligned}
$$

Note $\mathcal{X}(\mathcal{I})$ is convex and $\operatorname{conv} \mathcal{Z}(\mathcal{I})=\left\{z \in[0,1]^{n}: z_{i}=1 \forall i \in \mathcal{I}\right\}$
Still 2^{n} disjunctions! \Rightarrow

New disjunctive representation in non-homogeneous cases

General (non-homogeneous) cases
Observe x_{i} and z_{i} are linked only through $x_{i}\left(1-z_{i}\right)=0$
\Rightarrow decompose \mathcal{Q} based on either $x_{i}=0$ or $z_{i}=1$

$$
\begin{aligned}
\mathcal{Q} & =\bigcup_{\mathcal{I} \subseteq[n]} \mathcal{Q} \cap\left\{(t, x, z): z_{i}=1 \forall i \in \mathcal{I}, x_{i}=0 \forall i \notin \mathcal{I}\right\} \\
& =\bigcup_{\mathcal{I} \subseteq[n]}^{\left\{(t, x): t \geq f(x), x_{i}=0 \forall i \notin \mathcal{I}\right\}} \times \underbrace{\left\{z \in\{0,1\}^{n}: z_{i}=1 \forall i \in \mathcal{I}\right\}}_{\mathcal{X}(\mathcal{I})} \\
& =: \bigcup_{\mathcal{I} \subseteq[n]} \underbrace{\mathcal{X}(\mathcal{I}) \times \mathcal{Z}(\mathcal{I})}_{\mathcal{X}(\mathcal{I})}
\end{aligned}
$$

Note $\mathcal{X}(\mathcal{I})$ is convex and $\operatorname{conv} \mathcal{Z}(\mathcal{I})=\left\{z \in[0,1]^{n}: z_{i}=1 \forall i \in \mathcal{I}\right\}$
Still 2^{n} disjunctions! \Rightarrow Exploit the low-rank structure $f(x)=g(A x)$

Convex hull description of \mathcal{Q}

Theorem (Han and Gómez (2021))

Assume $\operatorname{rank}(f) \leq k$ and $f(0)=0$. Then

$$
\operatorname{clconv}(\mathcal{Q})=\operatorname{clconv}\left(\left(\bigcup_{\mathcal{I}:|\mathcal{I}| \leq k} \mathcal{V}(\mathcal{I}) \cup \mathcal{R}\right)\right)
$$

where

$$
\mathcal{R}=\left\{(t, x, z): t \geq 0, A x=0, x_{i} \geq 0, \forall i \in \mathcal{I}_{+}, z_{i}=1, \forall i \in[n]\right\}
$$

- $\mathcal{V}(\mathcal{I})$: "extreme points" of $\mathrm{cl} \operatorname{conv} \mathcal{Q}$
- \mathcal{R} : "extreme rays" of $\mathrm{cl} \operatorname{conv} \mathcal{Q}$
- $\mathcal{O}\left(n^{k}\right)$ number of disjunctions

Convex hull description of \mathcal{Q}

Proof outline.
Consider

$$
\begin{gathered}
\min a^{\top} x+c^{\top} z+g(A x) \\
\text { s.t. } x_{i} \geq 0 \quad \forall i \in \mathcal{I}_{+} \\
x \circ(1-z)=0
\end{gathered}
$$

Assume (\bar{x}, \bar{z}) is the optimal solution to (MINLP).

Convex hull description of \mathcal{Q}

Proof outline.
Consider

$$
\begin{gathered}
\min a^{\top} x+c^{\top} z+g(A x) \\
\text { s.t. } x_{i} \geq 0 \quad \forall i \in \mathcal{I}_{+} \\
x \circ(1-z)=0
\end{gathered}
$$

Assume (\bar{x}, \bar{z}) is the optimal solution to (MINLP). Then

$$
\begin{align*}
& \min a^{\top} x+g(A \bar{x}) \\
& \text { s.t. } A x=A \bar{x} \\
& \quad \bar{x}_{i} x_{i} \geq 0 \quad \forall i \tag{LP}\\
& \\
& x_{i}=0 \quad \forall i: \bar{z}_{i}=0
\end{align*}
$$

has an optimal solution \hat{x} with at most $\operatorname{rank}(A)=k$ nonzero entries. Moreover, (\hat{x}, \bar{z}) is optimal to (MINLP).

Convex hull description of \mathcal{Q}

Proof outline.
Consider

$$
\begin{aligned}
& \min a^{\top} x+c^{\top} z+g(A x) \\
& \text { s.t. } x_{i} \geq 0 \quad \forall i \in \mathcal{I}_{+} \\
& x \circ(1-z)=0
\end{aligned}
$$

Assume (\bar{x}, \bar{z}) is the optimal solution to (MINLP). Then

$$
\begin{align*}
& \min a^{\top} x+g(A \bar{x}) \\
& \text { s.t. } A x=A \bar{x} \\
& \quad \bar{x}_{i} x_{i} \geq 0 \quad \forall i \tag{LP}\\
& \\
& x_{i}=0 \quad \forall i: \bar{z}_{i}=0
\end{align*}
$$

has an optimal solution \hat{x} with at most $\operatorname{rank}(A)=k$ nonzero entries.
Moreover, (\hat{x}, \bar{z}) is optimal to (MINLP).
$\Rightarrow(\hat{x}, \bar{z}) \in$ a certain $\mathcal{V}(\mathcal{I})$ with $|\mathcal{I}| \leq k$.

Implementation: perspective function

Definition (Perspective function)

Given a closed convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, its perspective function $f^{\pi}(x, \lambda)$ is defined as

$$
f^{\pi}(x, \lambda)= \begin{cases}\lambda f\left(\frac{x}{\lambda}\right) & \text { if } \lambda>0 \\ \lim _{\lambda \rightarrow 0} \lambda f\left(\frac{x}{\lambda}\right) & \text { if } \lambda=0 \\ +\infty & \text { o.w. }\end{cases}
$$

- f^{π} is closed, convex, positively homogeneous

Implementation: perspective function

Definition (Perspective function)

Given a closed convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, its perspective function $f^{\pi}(x, \lambda)$ is defined as

$$
f^{\pi}(x, \lambda)= \begin{cases}\lambda f\left(\frac{x}{\lambda}\right) & \text { if } \lambda>0 \\ \lim _{\lambda \rightarrow 0} \lambda f\left(\frac{x}{\lambda}\right) & \text { if } \lambda=0 \\ +\infty & \text { o.w }\end{cases}
$$

- f^{π} is closed, convex, positively homogeneous

Example $f(x)=x^{2}$
$\Rightarrow f^{\pi}(x, \lambda)= \begin{cases}x^{2} / \lambda & \text { if } \lambda>0 \\ 0 & \text { if }(x, \lambda)=0 \\ +\infty & \text { o.w. }\end{cases}$

Case study

Rank-one case $f=g\left(\sum_{i=1}^{n} a_{i} x_{i}\right)$

- New DP representation + low rank \Rightarrow

Proposition (Han and Gómez (2021))

Point $(t, x, z) \in \operatorname{clconv} \mathcal{Q}$ if and only if there exists $\lambda, \tau \in \mathbb{R}^{n}$ such that the following inequality system is consistent

$$
\begin{aligned}
& t \geq \sum_{i=1}^{n} g^{\pi}\left(a_{i}\left(x_{i}-\tau_{i}\right), \lambda_{i}\right), \\
& a^{\top} \tau=0,0 \leq \tau_{i} \leq x_{i} \forall i \in \mathcal{I}_{+}, \\
& \lambda_{i} \leq z_{i} \leq 1 \forall i \in[n], \\
& \lambda \geq 0, \sum_{i=1}^{n} \lambda_{i} \leq 1
\end{aligned}
$$

More discussion in rank-one case

k or n	f	$\mathcal{I}_{+}=\emptyset(x$ free $)$	$\mathcal{I}_{+}=[n](x \geq 0)$	
$n=1$		Ceria et al.(1999), Frangioni et al.(2006), Aktürk et al.(2009), etc.		
$k=1$	Quad	Atamtürk et al. (2019)	Atamtürk et al. (2023)	
	Conv	Wei et al. (2022)	Shafieezadeh-Abadeh et al. (2023)	
$n=2$	Quad	\checkmark	Han et al. (2023), De Rosa et al. (2023)	
	$k \geq 2$		\checkmark	\checkmark

More discussion in rank-one case

k or n	f	$\mathcal{I}_{+}=\emptyset(x$ free $)$	$\mathcal{I}_{+}=[n](x \geq 0)$	
$n=1$		Ceria et al.(1999), Frangioni et al.(2006), Aktürk et al.(2009), etc.		
$k=1$	Quad	Atamtürk et al. (2019)	Atamtürk et al. (2023)	
	Conv	Wei et al. (2022)	Shafieezadeh-Abadeh et al. (2023)	
$n=2$	Quad	\checkmark	Han et al. (2023), De Rosa et al. (2023)	
	$k \geq 2$		\checkmark	\checkmark

- Atamtürk et al. (2023): cl conv \mathcal{Q} described by cutting surfaces with $\mathcal{O}(n)$ additional vars per cut
- Our results: more compact extended formulation $(\mathcal{O}(n)$ in total)

More discussion in rank-one case

k or n	f	$\mathcal{I}_{+}=\emptyset(x$ free $)$	$\mathcal{I}_{+}=[n](x \geq 0)$	
$n=1$		Ceria et al.(1999), Frangioni et al.(2006), Aktürk et al.(2009), etc.		
$k=1$	Quad	Atamtürk et al. (2019)	Atamtürk et al. (2023)	
	Conv	Wei et al. (2022)	Shafieezadeh-Abadeh et al. (2023)	
$n=2$	Quad	\checkmark	Han et al. (2023), De Rosa et al. (2023)	
	$k \geq 2$		\checkmark	\checkmark

- Atamtürk et al. (2023): cl conv \mathcal{Q} described by cutting surfaces with $\mathcal{O}(n)$ additional vars per cut
- Our results: more compact extended formulation $(\mathcal{O}(n)$ in total)
\Rightarrow More efficient implementation

Experimental results - portfolio optimization

Cutting surface implementation v.s. Extended formulation

Figure: Number of instances solved as a function of time.

- Average time: cutting surface 1.79 s v.s. extended formulation 0.78 s
- Maximum time: cutting surface 13.3 s v.s. extended formulation 2.6 s

Experimental results - signal denoising

Rank-two v.s. Rank-one v.s. Big-M

Figure: Number of instances solved as a function of time

Agenda

(1) Introduction
(2) Main results - convex hull description
(3) Conclusions

Take home message

- New DP representation for low-rank functions with indicator variables
- Compact extended formulation for convex hull description
- More efficient implementation in practice

Our paper is available at: https://arxiv.org/abs/2110.14884

Take home message

- New DP representation for low-rank functions with indicator variables
- Compact extended formulation for convex hull description
- More efficient implementation in practice

Our paper is available at: https://arxiv.org/abs/2110.14884

Thank You!

Reference I

Aktürk, M. S., Atamtürk, A., and Gürel, S. (2009). A strong conic quadratic reformulation for machine-job assignment with controllable processing times. Operations Research Letters, 37(3):187-191.
Atamtürk, A. and Gómez, A. (2019). Rank-one convexification for sparse regression. arXiv preprint arXiv:1901.10334.
Atamtürk, A. and Gómez, A. (2023). Supermodularity and valid inequalities for quadratic optimization with indicators. Mathematical Programming, 201(1-2):295-338.
Bienstock, D. (1996). Computational study of a family of mixed-integer quadratic programming problems. Mathematical Programming, 74(2):121-140.
Ceria, S. and Soares, J. (1999). Convex programming for disjunctive convex optimization. Mathematical Programming, 86:595-614.
De Rosa, A. and Khajavirad, A. (2022). Explicit convex hull description of bivariate quadratic sets with indicator variables. arXiv preprint arXiv:2208.08703.

Reference II

Frangioni, A. and Gentile, C. (2006). Perspective cuts for a class of convex 0-1 mixed integer programs. Mathematical Programming, 106(2):225-236.
Han, S. and Gómez, A. (2021). Compact extended formulations for low-rank functions with indicator variables. Submitted to Mathematics of Operations Research.
Han, S., Gómez, A., and Atamtürk, A. (2023). 2×2-convexifications for convex quadratic optimization with indicator variables. Mathematical Programming.
Rockafellar, R. T. (1970). Convex analysis, volume 18. Princeton university press.
Shafieezadeh-Abadeh, S. and Kılınç-Karzan, F. (2023). Constrained optimization of rank-one functions with indicator variables. arXiv preprint arXiv:2303.18158.
Wei, L., Gómez, A., and Küçükyavuz, S. (2022). Ideal formulations for constrained convex optimization problems with indicator variables. Mathematical Programming, 192(1):57-88.

