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Introduction

Consider

min
x ,z

∑
k

fk(x) + a⊤x + c⊤z

s.t. xi (1− zi ) = 0, zi ∈ {0, 1} ∀i ∈ [n]

xi ≥ 0 ∀i ∈ I+ ⊆ [n]

other constraints on (x , z),

where each fk is convex.

On/off constraints: zi = 0 ⇒ xi = 0

Nonconvex and NP-hard

Assumption Each fk is a low-rank closed convex function
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Introduction

Assumption Each fk is a low-rank closed convex function

Definition (Rank; Rockafellar (1970))

The rank of f is the smallest integer k such that f (x) = g(Ax) + c⊤x for
some convex function g : Rk → R and matrix A ∈ Rk×n

Examples

f (x) = c⊤x , then rank(f ) = 0

f (x) = log
(
exp(a⊤x) + 1

)
+ c⊤x , then rank(f ) = 1

f (x) = g
(
a⊤x

)
+ g

(
b⊤x

)
, then rank(f ) = 2

f (x) = x⊤Qx + c⊤x , then rank(f ) = rank(Q)
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Motivating application I – portfolio optimization

Portfolio index tracking problem Construct a portfolio of securities to
reproduce the performance of a stock market index

min
x ,z

(x − xB)
⊤Q(x − xB)

s.t. x ≥ 0,
∑
i∈[n]

xi = 1

∥x∥0 ≤ m

xB ∈ Rn: benchmark index portfolio

Q: covariance matrix of security returns

m: maximum number of securities in the portfolio
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Motivating application I – portfolio optimization

MIQP reformulation

min
x ,z

(x − xB)
⊤Q(x − xB)

s.t. x ≥ 0,
∑
i∈[n]

xi = 1

xi (1− zi ) = 0, zi ∈ {0, 1} ∀i ∈ [n]∑
i∈[n]

zi ≤ m

zi = 0 ⇒ xi = 0

Covariances are estimated from a factor model (Bienstock (1996))

Q = FF⊤,

where F ∈ Rn × Rk , k ≤ 20 is small
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Motivation application II – signal denoising

Signal denoising problem Given the noisy observations c ∈ Rn of a
temporal process, consider

Smooth

Sparse

Outliers
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Motivation application II – signal denoising

Signal denoising problem Given the noisy observations c ∈ Rn of a
temporal process, consider

min
x ,v ,z,w

n∑
i=1

(xi

− vi

− ci )
2︸ ︷︷ ︸

fitness

+Ω
n∑

i=ℓ+1

xi −
ℓ∑

j=1

αjxi−ℓ+j−1

2

︸ ︷︷ ︸
smoothness

s.t.

xi (1− zi ) = 0, zi ∈ {0, 1} ∀i ∈ [n],
n∑

i=1

zi ≤ k1 (sparsity)

vi (1− wi ) = 0, wi ∈ {0, 1} ∀i ∈ [n],
n∑

i=1

wi ≤ k2 (outlier)

xi : true values of the signal

ci : noisy observations

8 / 22



Motivation application II – signal denoising

Signal denoising problem Given the noisy observations c ∈ Rn of a
temporal process, consider

min
x ,v ,z,w

n∑
i=1

(xi

− vi

− ci )
2︸ ︷︷ ︸

fitness

+Ω
n∑

i=ℓ+1

xi −
ℓ∑

j=1

αjxi−ℓ+j−1

2

︸ ︷︷ ︸
smoothness

s.t.

xi (1− zi ) = 0, zi ∈ {0, 1} ∀i ∈ [n],
n∑

i=1

zi ≤ k1 (sparsity)

vi (1− wi ) = 0, wi ∈ {0, 1} ∀i ∈ [n],
n∑

i=1

wi ≤ k2 (outlier)

α = 0.9: decaying factor of proximity

Ω: weight of smoothness

8 / 22



Motivation application II – signal denoising

Signal denoising problem Given the noisy observations c ∈ Rn of a
temporal process, consider

min
x ,v ,z,w

n∑
i=1

(xi

− vi

− ci )
2︸ ︷︷ ︸

fitness

+Ω
n∑

i=ℓ+1

xi −
ℓ∑

j=1

αjxi−ℓ+j−1

2

︸ ︷︷ ︸
smoothness

s.t. xi (1− zi ) = 0, zi ∈ {0, 1} ∀i ∈ [n],
n∑

i=1

zi ≤ k1 (sparsity)

vi (1− wi ) = 0, wi ∈ {0, 1} ∀i ∈ [n],
n∑

i=1

wi ≤ k2 (outlier)

α = 0.9: decaying factor of proximity

Ω: weight of smoothness

8 / 22



Motivation application II – signal denoising

Signal denoising problem Given the noisy observations c ∈ Rn of a
temporal process, consider

min
x ,v ,z,w

n∑
i=1

(xi − vi − ci )
2︸ ︷︷ ︸

fitness+robustness

+Ω
n∑

i=ℓ+1

xi −
ℓ∑

j=1

αjxi−ℓ+j−1

2

︸ ︷︷ ︸
smoothness

s.t. xi (1− zi ) = 0, zi ∈ {0, 1} ∀i ∈ [n],
n∑

i=1

zi ≤ k1 (sparsity)

vi (1− wi ) = 0, wi ∈ {0, 1} ∀i ∈ [n],
n∑

i=1

wi ≤ k2 (outlier)

wi = 0: vi = 0 ⇒ ci is not an outlier

wi = 1: xi − vi − ci = 0 ⇒ ci is an outlier

8 / 22



Introduction

MINLP with low-rank structure

min
x ,z

∑
k

fk(x) + a⊤x + c⊤z

s.t. xi (1− zi ) = 0, zi ∈ {0, 1} ∀i ∈ [n]

xi ≥ 0 ∀i ∈ I+ ⊆ [n]

other constraints on (x , z),

To solve it efficiently, we study

Q =

{
(t, x , z) ∈ Rn+1 × {0, 1}n :

t ≥ f (x), xi ≥ 0 ∀i ∈ I+
xi (1− zi ) = 0 ∀i ∈ [n]

}

Goal: Compute cl convQ
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Literature review

Known cases for cl conv(Q)

Q =

{
(t, x , z) ∈ Rn+1 × {0, 1}n :

t ≥ f (x), xi ≥ 0 ∀i ∈ I+
xi (1− zi ) = 0 ∀i ∈ [n]

}
k = rank(f ), Quad = Quadratic, Conv = General Convex

k or n f I+ = ∅ (x free) I+ = [n] (x ≥ 0)

n = 1 Ceria et al.(1999), Frangioni et al.(2006), Aktürk et al.(2009), etc.

k = 1
Quad Atamtürk et al. (2019) Atamtürk et al. (2023)

Conv Wei et al. (2022) Shafieezadeh-Abadeh et al. (2023)

n = 2 Quad ? Han et al. (2023), De Rosa et al. (2023)

k ≥ 2 ? ?

This work ✓: Compact︸ ︷︷ ︸
O(nk )

description of cl conv(Q) using disjunctive programming
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Preliminaries: disjunctive programming

Assume one binary variable

X ⊆ R2 × {0, 1}

Convex hull of X

𝑆1

𝑆2
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Preliminaries: disjunctive programming

For any mixed-binary set X ⊆ Rm × {0, 1}n,

X =
⋃

z̄∈{0,1}n
[X ∩ (Rm × {z̄})]

# of disjunctions = 2n

Disjunctive programming ⇒ describe convX in a lifted space

# of additional vars ≈ dim(X )×# of disjunctions = O((n +m)2n)

⇒ Only applicable in practice for small n

N/A to our setting:

Q =

{
(t, x , z) ∈ Rn+1 × {0, 1}n :

t ≥ f (x), xi ≥ 0 ∀i ∈ I+
xi (1− zi ) = 0 ∀i ∈ [n]

}
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Homogeneous cases

Consider

Q =

{
(t, x , z) ∈ Rn+1 × {0, 1}n :

t ≥ f (x), xi ≥ 0 ∀i ∈ I+
xi (1− zi ) = 0 ∀i ∈ [n]

}
,

where f : Rn → R is convex and I+ ⊆ [n]

Proposition (Han and Gómez (2021))

If f is positively homogeneous, i.e. f (λx) = λf (x) for all λ ≥ 0, then

cl convQ =

{
(t, x , z) ∈ Rn+1 × [0, 1]n :

t ≥ f (x), xi ≥ 0 ∀i ∈ I+
xi (1− zi ) = 0 ∀i ∈ [n]

}
.
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New disjunctive representation in non-homogeneous cases

General (non-homogeneous) cases

Observe xi and zi are linked only through xi (1− zi ) = 0

⇒ decompose Q based on either xi = 0 or zi = 1

Q =
⋃

I⊆[n]

Q∩ {(t, x , z) : zi = 1 ∀i ∈ I, xi = 0 ∀i /∈ I}

=
⋃

I⊆[n]

{(t, x) : t ≥ f (x), xi = 0∀i /∈ I}︸ ︷︷ ︸
X (I)

×{z ∈ {0, 1}n : zi = 1∀i ∈ I}︸ ︷︷ ︸
Z(I)

=:
⋃

I⊆[n]

X (I)×Z(I)︸ ︷︷ ︸
V(I)

Note X (I) is convex and convZ(I) = {z ∈ [0, 1]n : zi = 1 ∀i ∈ I}
Still 2n disjunctions! ⇒ Exploit the low-rank structure f (x) = g(Ax)
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Q =
⋃

I⊆[n]

Q∩ {(t, x , z) : zi = 1 ∀i ∈ I, xi = 0 ∀i /∈ I}

=
⋃

I⊆[n]

{(t, x) : t ≥ f (x), xi = 0∀i /∈ I}︸ ︷︷ ︸
X (I)

×{z ∈ {0, 1}n : zi = 1∀i ∈ I}︸ ︷︷ ︸
Z(I)

=:
⋃

I⊆[n]

X (I)×Z(I)︸ ︷︷ ︸
V(I)

Note X (I) is convex and convZ(I) = {z ∈ [0, 1]n : zi = 1 ∀i ∈ I}
Still 2n disjunctions! ⇒

Exploit the low-rank structure f (x) = g(Ax)
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Convex hull description of Q

Theorem (Han and Gómez (2021))

Assume rank(f ) ≤ k and f (0) = 0. Then

cl conv(Q) = cl conv

 ⋃
I:|I|≤k

V(I) ∪R

 ,

where

R = {(t, x , z) : t ≥ 0,Ax = 0, xi ≥ 0, ∀i ∈ I+, zi = 1, ∀i ∈ [n]}

V(I): “extreme points” of cl convQ

R: “extreme rays” of cl convQ

O(nk) number of disjunctions
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Convex hull description of Q

Proof outline.

Consider
min a⊤x + c⊤z + g(Ax)

s.t. xi ≥ 0 ∀i ∈ I+
x ◦ (1− z) = 0

(MINLP)

Assume (x̄ , z̄) is the optimal solution to (MINLP).

Then

min a⊤x + g(Ax̄)

s.t. Ax = Ax̄

x̄ixi ≥ 0 ∀i
xi = 0 ∀i : z̄i = 0

(LP)

has an optimal solution x̂ with at most rank(A) = k nonzero entries.
Moreover, (x̂ , z̄) is optimal to (MINLP).
⇒ (x̂ , z̄) ∈ a certain V(I) with |I| ≤ k .
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Implementation: perspective function

Definition (Perspective function)

Given a closed convex function f : Rn → R, its perspective function
f π(x , λ) is defined as

f π(x , λ) =


λf

(
x
λ

)
if λ > 0

lim
λ→0

λf
(
x
λ

)
if λ = 0

+∞ o.w.

f π is closed, convex, positively homogeneous

Example f (x) = x2

⇒ f π(x , λ) =


x2/λ if λ > 0

0 if (x , λ) = 0

+∞ o.w.

𝑡 ≥ 𝑥2

𝑥

𝑡

𝑧

𝑧 = 1

𝑧 = 0
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Case study

Rank-one case f = g (
∑n

i=1 aixi )

New DP representation + low rank ⇒

Proposition (Han and Gómez (2021))

Point (t, x , z) ∈ cl convQ if and only if there exists λ, τ ∈ Rn such that
the following inequality system is consistent

t ≥
n∑

i=1

gπ(ai (xi − τi ), λi ),

a⊤τ = 0, 0 ≤ τi ≤ xi ∀i ∈ I+,
λi ≤ zi ≤ 1 ∀i ∈ [n],

λ ≥ 0,
n∑

i=1

λi ≤ 1
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More discussion in rank-one case

k or n f I+ = ∅ (x free) I+ = [n] (x ≥ 0)

n = 1 Ceria et al.(1999), Frangioni et al.(2006), Aktürk et al.(2009), etc.

k = 1
Quad Atamtürk et al. (2019) Atamtürk et al. (2023)

Conv Wei et al. (2022) Shafieezadeh-Abadeh et al. (2023)

n = 2 Quad ✓ Han et al. (2023), De Rosa et al. (2023)

k ≥ 2 ✓ ✓

Atamtürk et al. (2023): cl convQ described by cutting surfaces with
O(n) additional vars per cut

Our results: more compact extended formulation (O(n) in total)

⇒ More efficient implementation
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Experimental results - portfolio optimization

Cutting surface implementation v.s. Extended formulation
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Figure: Number of instances solved as a function of time.

Average time: cutting surface 1.79s v.s. extended formulation 0.78s

Maximum time: cutting surface 13.3s v.s. extended formulation 2.6s
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Experimental results - signal denoising

Rank-two v.s. Rank-one v.s. Big-M
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Take home message

New DP representation for low-rank functions with indicator variables

Compact extended formulation for convex hull description

More efficient implementation in practice

Our paper is available at: https://arxiv.org/abs/2110.14884

Thank You!
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Atamtürk, A. and Gómez, A. (2023). Supermodularity and valid inequalities for
quadratic optimization with indicators. Mathematical Programming,
201(1-2):295–338.

Bienstock, D. (1996). Computational study of a family of mixed-integer quadratic
programming problems. Mathematical Programming, 74(2):121–140.

Ceria, S. and Soares, J. (1999). Convex programming for disjunctive convex
optimization. Mathematical Programming, 86:595–614.

De Rosa, A. and Khajavirad, A. (2022). Explicit convex hull description of
bivariate quadratic sets with indicator variables. arXiv preprint
arXiv:2208.08703.

1 / 2



Reference II

Frangioni, A. and Gentile, C. (2006). Perspective cuts for a class of convex 0–1
mixed integer programs. Mathematical Programming, 106(2):225–236.

Han, S. and Gómez, A. (2021). Compact extended formulations for low-rank
functions with indicator variables. Submitted to Mathematics of Operations
Research.

Han, S., Gómez, A., and Atamtürk, A. (2023). 2Ö2-convexifications for convex
quadratic optimization with indicator variables. Mathematical Programming.

Rockafellar, R. T. (1970). Convex analysis, volume 18. Princeton university press.
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