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Markov random field

Markov random field An MRF model is defined on an undirected graph
G = (V, E), where

random variable Xi = xi + ϵi with ϵi ∼ N (0, σ2
i ) for i ∈ V

Xi is only dependent on its neighbors and independent of others

MRF inference Infer true values of {Xi}i∈V from noisy observations {ai}i∈V

minimize
x∈Rn

∑

i∈V

1

σ2
i

(xi − ai )
2

︸ ︷︷ ︸
fitness

+
∑

(i ,j)∈E

1

σij
(xi − xj)

2

︸ ︷︷ ︸
smoothness

subject to ℓi ≤ xi ≤ ui ∀i ∈ V
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xi : true values (decision variables)
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ℓi ∈ R ∪ {−∞}, ui ∈ R ∪ {+∞}
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Markov property

Negative correlation

Smoothness / pairwise similarity
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Application

1D MRF

Time

Figure: Weiner Process - Time Series
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Application

2D MRF

(a) Image denoising

by global minimum, maximum, median etc.) fail to achieve
suitable results as the calculated values fit the global range
of values rather than the local neighborhood. The solution to
this issue is to deploy a local replacement method based on the
subsequent MRF model. Missing values are therefore replaced
by the mean over the values of their spatial neighbors, defined
by the undirected graph of the MRF, as introduced in Section
II.

C. MRF Model for Wafermaps

Theoretic results on MRF models provided in Section II are
applicable in order to build a model for pattern extraction in
wafer test data. A wafermap can be interpreted as a realization
of a Markov Random Field, where each device (identified
by its x- and y-coordinate) corresponds to one node in the
MRF model, as suggested in Fig. 3 using a 4-neighborhood
structure. In the following S denotes the set of device positions
on the wafer, i.e. the set of nodes in the MRF model.
A Bayesian image restoration approach, illustrated e.g. by

Li [6], is used to prepare the wafermap for pattern comparison.
It is assumed that S is the set of devices on the wafer (given
by their x- and y-coordinates) and n = |S| ∈ N is the number
of devices on a wafer. Models for image restoration generally
consist of the real (measured) data d ∈ Rn, the underlying
true values x ∈ Rn and an error term ε ∈ Rn. The true values
will be referred to as pattern values due to the application on
wafer test patterns. A simple but efficient additive noise model
is given by

d = x+ ε. (5)

Technically, this equation system is underdetermined, be-
cause restored values x and error term ε are unknown, unless
additional assumptions are introduced. In analogy to simple
regression models, the error term is defined as Gaussian white
noise, i.e. εi

i.i.d.∼ N(0, σ2).
Based on this assumption, the Maximum-Likelihood esti-

mator for x can be calculated. The Likelihood function of the
data d given the pattern x, L : Rn → R, is given by the density
function ϕ : R→ R of the standard normal distribution

L(d|x) =
∏

i∈S
ϕ

(
xi − di
σ2

)
. (6)

Fig. 3: Markov Random Field representation of devices on a wafer, assuming
a 4-neighborhood structure

Semantically, the Likelihood serves as a relation between
the pattern and the data. The Maximum Likelihood estimator
is defined as

x̂ML = argmax
x∈Rn

L(d|x). (7)

A smoothed restoration of the pattern can be achieved by
introducing prior knowledge to the model. The structure of
the clique potentials of the joint distribution (which is a Gibbs
distribution due to the assumption of a MRF, see Section II)
is specified. By means of Bayesian inference, the posterior
distribution can be calculated, combining the likelihood and
the prior distribution. Basically, two different approaches are
possible, leading to a discrete and a continuous model. In
order to avoid additional restrictions to the data, the continuous
model is chosen in the following.

D. The Continuous Model

By using a continuous image restoration approach, the
measurement values are manipulated in order to approximate a
continuous surface. Consequently, this method is beneficial for
patterns containing gradual changes over the wafer, whereas
showing drawbacks if sharp edges occur on the wafer.
The construction of a continuous prior distribution requires

the fact, that the joint distribution of a Markov Random Field is
Gibbs distribution, which is stated by the Hammersley-Clifford
theorem in II. From (4), the Gibbs density function can be
decomposed into the clique potentials

fGibbs(x) ∝
∏

i∈C1

e−βV1(xi) ·
∏∏

{i,j}∈C2

e−βV2(xi,xj) · . . .

In order to specify a prior distribution, it suffices to select
adequate clique potentials. Assuming a 4-neighborhood struc-
ture, only 1- and 2-cliques exist in the neighborhood graph,
therefore V1 and V2 need to be specified. V1 represents the
single nodes separately, therefore it does not contribute to
the smoothness properties of the distribution. Consequently,
we set V1(x) = 0 ∀x ∈ Rn. V2 represents all pairs of
adjacent nodes and therefore carries the potential to influence
the smoothness properties of the surface. Using a parameter
v2 ∈ R+ controlling the strength of the smoothness condition,
V2 is defined by taking the discrepancy between the adjacent
pattern values xi and xj into account:

V2(xi, xj) = v2(xi − xj)
2 (8)

In the end, the prior energy function E(prior)(x) results in

E(prior)(x) =
∑∑

{i,j}∈C2

V2(xi, xj) (9)

=
∑

i∈S

∑

j∈Ni

v2(xi − xj)
2, (10)

where Ni is the set of neighbors of the ith device according to
the defined neighborhood structure. The corresponding prior
density function is denoted by f (prior), the posterior density
function will analogously be denoted by f (posterior) as well as
the posterior energy function E(posterior).
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(b) Manufacturing (Schrunner
et al. 2017)
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Application

3D MRF
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(a) Epidemiology (Morris et al.
2019)

which was geocoded using ArcGIS 10.0 to geographic coordinates (x, y) with a 98 %

success rate. A point-in-polygon method was used to sum the number of property crime

incidents in each DA, resulting in property crime counts for all small-area units.

Descriptive statistics show that, in general, there was a decrease in property crime from

2006 (20,473 cases) to 2007 (19,520 cases) of 953 incidents or approximately 0.83 inci-

dents per DA (Table 1). Mean property crime rates of DAs for 2006 and 2007 were the

same (=0.02), despite a slightly higher maximum crime rate recorded in 2007 (map legend

of Fig. 1). In 2006, high rates of property crime were located in the north and south-west

areas of York Region, with lower rates in the west and east portions (Fig. 1). This trend

persisted in 2007. Visually, a number of DAs showed a change in crime rate, particularly in

the middle and along the west and east edges of York Region.

Methodology

A number of Bayesian spatio-temporal models from the field of epidemiology were con-

sidered by the authors for modeling property crime in York Region including those

developed by Bernardinelli et al. (1995), Knorr-Held (2000), Knorr-Held and Besag

(1998), and Congdon (2000). We adapted the model from Bernardinelli et al. (1995)

because it contains terms that enable the mean trend and area-specific trends to be

Table 1 Descriptive statistics
for property crime in York
Region for 2006 and 2007

2006 2007

Regional level: total count 20,473 19,520

DA level: mean count (s.d.) 18.14 (53.98) 17.31 (56.00)

DA level: mean rate (s.d.) 0.02 (0.05) 0.02 (0.05)

Fig. 1 Quantile maps of crude property crime rate by DA for 2006 (left) and 2007 (right)

64 J Quant Criminol (2014) 30:57–78

123

(b) Criminology (Law et al. 2014)
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Sparse MRF inference

Assumption the underlying statistical process is sparse

minimize
x∈Rn

∑

i∈V

1

σ2
i

(xi − ai )
2

︸ ︷︷ ︸
fitness

+
∑

(i ,j)∈E

1

σ2
ij

(xi − xj)
2

︸ ︷︷ ︸
smoothness

+λ∥x∥0︸ ︷︷ ︸
sparsity

subject to ℓi ≤ xi ≤ ui ∀i ∈ V

ℓizi ≤ xi ≤ uizi ∀i ∈ V
z ∈ {0, 1}n

Define 0 · (±∞) = 0

zi indicates if xi is zero: [zi = 0 ⇒ xi = 0] & [zi = 1 ⇒ ℓi ≤ xi ≤ ui ]

If ℓi = −∞ and ui = +∞, then ℓizi ≤ xi ≤ uizi ⇔ xi (1− zi ) = 0
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Robust MRF

Assumption a few observations ai are corrupted by gross outliers

minimize
U⊆V,x∈Rn

∑

i∈V\U

1

σ2
i

(xi − ai )
2

︸ ︷︷ ︸
fitness

+
∑

(i ,j)∈E

1

σ2
ij

(xi − xj)
2

︸ ︷︷ ︸
smoothness

+ λ|U|︸︷︷︸
robustness

subject to ℓi ≤ xi ≤ ui ∀i ∈ V

U : the set of outliers

Introducing binary variables [zi = 1 ⇔ i ∈ U ] ⇒ a MIP formulation
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Robust MRF inference

Assumption a few observations ai are corrupted by gross outliers

minimize
z,w ,x∈Rn

∑

i∈V

1

σ2
i

(xi − ai − wi )
2

︸ ︷︷ ︸
fitness

+
∑

(i ,j)∈E

1

σ2
ij

(xi − xj)
2

︸ ︷︷ ︸
smoothness

+ λ
∑

i∈V
zi

︸ ︷︷ ︸
robustness

subject to ℓi ≤ xi ≤ ui ∀i ∈ V
wi (1− zi ) = 0 ∀i ∈ V , z ∈ {0, 1}n

Equivalence

zi = 0: wi = 0 ⇒ ai is not an outlier

zi = 1: wi = ai − xi at the optimal solution ⇒ ai is an outlier

ℓ̃ = −∞ and ũ = +∞
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1D Example – combinatorial MRF

Smooth

Outliers
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Our contribution

Sparse and robust MRF can be put in the form

minimize
x∈Rn,z∈{0,1}n

{
1

2
x⊤Qx + b⊤x + c⊤z : ℓizi ≤ xi ≤ uizi ∀i

}
,

where Q ⪰ 0

and Qij ≤ 0 ∀i ̸= j

In general, the problem is NP-hard, e.g., if f (x) = the obj of OLS
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Our contribution

Sparse and robust MRF can be put in the form

minimize
x∈Rn,z∈{0,1}n

{
1

2
x⊤Qx + b⊤x + c⊤z : ℓizi ≤ xi ≤ uizi ∀i

}
,

where Q ⪰ 0 and Qij ≤ 0 ∀i ̸= j

Theorem (Polynomial solvability)

The problem of sparse/robust MRF can be solved as a binary submodular
minimization problem and thus is (strongly) polynomially solvable.
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Solution path / hyperparameter selection

Question When the sparsity pattern (or the number of outliers) are
unknown, how to choose λ in

p(λ)
def
=

minimum
ℓ≤x≤u

1

2
x⊤Qx + b⊤x + λ∥x∥0 (⋆)

Answer Compute all possible p(λ) and choose a desired one! (AIC, etc.)
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Solution path / hyperparameter selection

Question When the sparsity pattern (or the number of outliers) are
unknown, how to choose λ in

p(λ)
def
= minimum

ℓ≤x≤u

1

2
x⊤Qx + b⊤x + λ∥x∥0 (⋆)

Answer Compute all possible p(λ) and choose a desired one! (AIC, etc.)

Proposition

Solution path p(•) is a concave increasing piecewise affine function of λ,
which consists of at most n + 1 pieces. Moreover, it can be computed in
polynomial time.

Free of hyper-parameter tuning!
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Experimental results - robust MRF

Submodular v.s. MIP
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Figure: Number of instances solved as a function of time

Solvability: Submodular 92% versus MIP 8%

Solution time: 700x speed-up!
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A touch of math

We will

show sparse/robust MRF is theoretically tractable by reducing it
into a binary submodular minimization problem

make sparse/robust MRF practically tractable by designing a
parametric pivoting method to efficiently compute extremal bases
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Lattices

Meet and Join Given x , y ∈ Rn, define

Meet: x ∧ y
def
= (min{xi , yi})i

Join: x ∨ y
def
= (max{xi , yi})i

Lattice A set L ⊂ Rn is a lattice if [x , y ∈ L ⇒ x ∨ y , x ∧ y ∈ L]

x

y
x ∨ y

x ∧ y

0

1

1

1

z2

z3

z1
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Submodularity

Submodularity Given a lattice L ⊆ Rn, a function f : L → R is
submodular if

f (x) + f (y) ≥ f (x ∧ y) + f (x ∨ y) ∀x , y ∈ L
Remarks

If L ⊆ {0, 1}n, then f is a binary/set submodular function

If f ∈ C2(Rn), submodularity over Rn ⇔ ∂2f
∂yi∂yj

(y) ≤ 0 ∀i ̸= j
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Submodularity

Submodularity Given a lattice L ⊆ Rn, a function f : L → R is
submodular if

f (x) + f (y) ≥ f (x ∧ y) + f (x ∨ y) ∀x , y ∈ L
Remarks

If L ⊆ {0, 1}n, then f is a binary/set submodular function

If f ∈ C2(Rn), submodularity over Rn ⇔ ∂2f
∂yi∂yj

(y) ≤ 0 ∀i ̸= j

Examples

n = 1 ⇒ f (x) is submodular

f (x) = c⊤x is submodular

f (x) = x⊤




5 −1 −3
−1 3 −2
−3 −2 7


 x is submodular (Qij ≤ 0 for all i ̸= j)
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Submodularity

Submodularity Given a lattice L ⊆ Rn, a function f : L → R is
submodular if

f (x) + f (y) ≥ f (x ∧ y) + f (x ∨ y) ∀x , y ∈ L
Remarks

If L ⊆ {0, 1}n, then f is a binary/set submodular function

If f ∈ C2(Rn), submodularity over Rn ⇔ ∂2f
∂yi∂yj

(y) ≤ 0 ∀i ̸= j

Key observation

Lemma (Topkis (1978))

Given a lattice L ∈ Rm × Rn and a submodular function f : L → R, the
marginal function

v(z)
def
= minimum

x∈Rm
{f (x , z) : (x , z) ∈ L}

is submodular on the lattice projz
def
= {z : ∃x s.t. (x , z) ∈ L}.
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Nonnegative case

Assume ℓ ∈ Rn
+ and get back to

minimize
x∈Rn,z∈{0,1}n

{
1

2
x⊤Qx + b⊤x + c⊤z : ℓizi ≤ xi ≤ uizi ∀i

}
(⋆)

Objective

is submodular due to Qij ≤ 0 ∀i ̸= j

f (x) + c⊤z :=
1

2
x⊤Qx + b⊤x + c⊤z

Feasible region Π
i∈V

{(xi , zi ) ∈ R× {0, 1} : ℓizi ≤ xi ≤ ziui}

16



Nonnegative case

Assume ℓ ∈ Rn
+ and get back to

minimize
x∈Rn,z∈{0,1}n

{
1

2
x⊤Qx + b⊤x + c⊤z : ℓizi ≤ xi ≤ uizi ∀i

}
(⋆)

Objective is submodular due to Qij ≤ 0 ∀i ̸= j

f (x) + c⊤z :=
1

2
x⊤Qx + b⊤x + c⊤z

Feasible region Π
i∈V

{(xi , zi ) ∈ R× {0, 1} : ℓizi ≤ xi ≤ ziui}

16



Nonnegative case

Assume ℓ ∈ Rn
+ and get back to

minimize
x∈Rn,z∈{0,1}n

{
1

2
x⊤Qx + b⊤x + c⊤z : ℓizi ≤ xi ≤ uizi ∀i

}
(⋆)

Objective is submodular due to Qij ≤ 0 ∀i ̸= j

f (x) + c⊤z :=
1

2
x⊤Qx + b⊤x + c⊤z

Feasible region Π
i∈V

{(xi , zi ) ∈ R× {0, 1} : ℓizi ≤ xi ≤ ziui}

zi

xi

0
1

ui

ℓi

zi

xi

0
1

ℓi

ui < +∞ ui = +∞
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Nonnegative case

Assume ℓ ∈ Rn
+ and get back to

minimize
x∈Rn,z∈{0,1}n

{
1

2
x⊤Qx + b⊤x + c⊤z : ℓizi ≤ xi ≤ uizi ∀i

}
(⋆)

Objective is submodular due to Qij ≤ 0 ∀i ̸= j

f (x) + c⊤z :=
1

2
x⊤Qx + b⊤x + c⊤z

Feasible region is a lattice due to ℓ ≥ 0

Thus,
(⋆) ⇔ minimize

z∈{0,1}n
v(z) + c

⊤
z

where v(z) = minimum
x∈Rn

{f (x) : ℓ ◦ z ≤ x ≤ u ◦ z} is a binary

submodular function and can be evaluated by solving a convex program
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General case

Assume ℓ ̸∈ Rn
+,

minimize
x∈Rn,z∈{0,1}n

{
1

2
x⊤Qx + b⊤x + c⊤z : ℓizi ≤ xi ≤ uizi ∀i

}
(⋆)

Issue the feasible region is not a lattice if ℓi < 0

zi

xi

0
1

a

ui

ℓi

0∧ a

Figure: Region of {(xi , zi ) ∈ R× {0, 1} : ℓizi ≤ xi ≤ ziui}
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General case

Assume ℓ ̸∈ Rn
+,

minimize
x∈Rn,z∈{0,1}n

{
1

2
x⊤Qx + b⊤x + c⊤z : ℓizi ≤ xi ≤ uizi ∀i

}
(⋆)

Issue the feasible region is not a lattice if ℓi < 0

Idea If ℓi < 0 and ui > 0, then

ℓizi ≤ xi ≤ uizi , zi ∈ {0, 1} ⇔





zi = z+i + (1− z−i )

z+i ∈ {0, 1}, z−i ∈ {0, 1}
ℓi (1− z−i ) ≤xi≤ uiz

+
i

z−i ≥ z+i

⇒ lattice

Split zi into two parts z+i and (1− z−i )

z+i = 0 ⇒ [xi ]+
def
= max{xi , 0} = 0 ⇔ xi ≤ 0

1− z−i = 0 ⇒ [xi ]−
def
= max{−xi , 0} = 0 ⇔ xi ≥ 0

[xi ]+ and [xi ]− can not be both nonzero ⇒ z+i + (1− z−i ) ≤ 1
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General case

For simplicity, assume ℓ < 0 < u. Substituting out zi ,

minimize
x ,z+,z−∈Rn

1

2
x⊤Qx + b⊤x + c⊤(z+ + 1− z−)

subject to ℓi (1− z−i ) ≤ xi ≤ uiz
+
i ∀i

z− ≥ z+, z+, z− ∈ {0, 1}n
(⋆)
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subject to ℓi (1− z−i ) ≤ xi ≤ uiz
+
i ∀i

z− ≥ z+, z+, z− ∈ {0, 1}n
(⋆)

A mixed-integer submodular minimization problem! ⇒

(⋆) ⇔ minimize
(z+,z−)∈{0,1}2n

v(z+, z−) + c⊤(z+ + 1− z−),

where

v(z+, z−)
def
= minimum

x∈Rn

{
1

2
x⊤Qx + b⊤x : ℓi (1− z−i ) ≤ xi ≤ uiz

+
i ∀i

}

is binary submodular and can be evaluated by solving a convex program
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Implementation

Fact All known algorithms for minimizing binary submodular functions

minimize
z∈{0,1}n

v(z)

are required to compute extremal basis at each iteration
Extremal basis Assume at each iteration, the current solution is sorted as
z̄1 ≥ z̄2 ≥ · · · ≥ z̄n. The extremal basis6 (EB) is defined as

{
v
(
1[k]
)}n

k=0
,

where 1[k]
def
= (1, 1, . . . , 1︸ ︷︷ ︸

k ones

, 0, . . . , 0)

Example If n = 3 and z̄1 ≥ z̄2 ≥ z̄3, then one needs to compute

v(0, 0, 0), v(1, 0, 0), v(1, 1, 0), v(1, 1, 1)

6For delivery purpose, EB defined here is equivalent to but slightly different from the
standard one in literature
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Fast computation of extremal basis

In the context of sparse/robust MRF (assume ℓ = 0 for simplicity)

v
(
1[k]
)
= minimum

y∈Rk
{f (y1, y2, . . . , yk , 0, . . . , 0) : 0 ≤ yi ≤ ui ∀1 ≤ i ≤ k}

f (y) = 1
2y

⊤Qy + b⊤y ⇒ convex quadratic program

0.36
2.59

7.94

22.75

44.92

n
100 200 300 400 500

Standard Method

Time(s)

Out[ ]=

Time for computing EB Others
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y∈Rk
{f (y1, y2, . . . , yk , 0, . . . , 0) : 0 ≤ yi ≤ ui ∀1 ≤ i ≤ k}

f (y) = 1
2y

⊤Qy + b⊤y ⇒ solving n QPs per iter! [O(n4) operations]

0.36
2.59

7.94

22.75

44.92

n
100 200 300 400 500

Standard Method

Time(s)

Out[ ]=

Time for computing EB Others

As n = 500, 45 seconds/iter for computing EB ≥ 95% total time

20



Fast computation of extremal basis

In the context of sparse/robust MRF (assume ℓ = 0 for simplicity)

v
(
1[k]
)
= minimum

y∈Rk
{f (y1, y2, . . . , yk , 0, . . . , 0) : 0 ≤ yi ≤ ui ∀1 ≤ i ≤ k}

f (y) = 1
2y

⊤Qy + b⊤y ⇒ solving n QPs per iter! [O(n4) operations]

0.36
2.59

7.94

22.75

44.92

n
100 200 300 400 500

Standard Method

Time(s)

Out[ ]=

Time for computing EB Others

Question: how to efficiently compute
{
v
(
1[k]
)}n

k=0
in this context?
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Fast computation of extremal basis

Idea Assume ȳk is the optimal solution to k-th subproblem. Consider the
parametric optimization problem

vk(yk+1) = minimum
0≤y≤u[k]

f (y1, y2, . . . , yk︸ ︷︷ ︸
decision variables

, yk+1︸︷︷︸
parameter

, 0, . . . , 0)

yk(yk+1) = argmin
0≤y≤u[k]

f (y1, y2, . . . , yk , yk+1, 0, . . . , 0)

Observations

yk(0) = ȳk

v
(
1[k+1]

)
= minimum

0≤yk+1≤uk+1

vk(yk+1)

yk(y ′k+1) ≤ yk(y ′′k+1) if y
′
k+1 ≤ y ′′k+1. (Isotonicity)

Strategy Increase yk+1 from 0 and track yk(yk+1) until find optimal yk+1
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Fast computation of extremal basis

Example Consider

f (x) =
1

2
x⊤




5 −1 −3
−1 3 −2
−3 −2 7


 x −

3∑

i=1

xi , ℓ =



0
0
0


 , u =



1
1
1




Trajectory of x1, x2 and x3 in terms of driving variables
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
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1




Trajectory of x1, x2 and x3 in terms of driving variables

Step 1: to compute

v(1, 0, 0) = minimum
0≤x≤1

f (x1, 0, 0),

x1 is increased from 0
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Step 2: to compute

v(1, 1, 0) = minimize
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use x2 to drive the increase of x1
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Step 3: to compute

v(1, 1, 1) = minimize
0≤x≤1

f (x1, x2, x3),

use x3 to drive the increase of x1
and x2
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Fast computation of extremal basis

Example Consider

f (x) =
1

2
x⊤




5 −1 −3
−1 3 −2
−3 −2 7


 x −

3∑

i=1

xi , ℓ =



0
0
0


 , u =



1
1
1




Trajectory of x1, x2 and x3 in terms of driving variables

All subproblems

v(1, 0, 0), v(1, 1, 0) and v(1, 1, 1)

are solved
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Fast computation of extremal basis

Proposition

With fast computation strategy, in each iteration, the sequence{
v
(
1[k]
)}n

i=0
can be computed in O(n3).

0.36 0.00
2.59

0.04

7.94

0.12

22.75

0.56

44.92

1.2
n

100 200 300 400 500

Standard Method

Parametric Method

Time(s)

44.92 seconds v.s. 1.2 seconds: ≈ 40x faster!
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Extension

Results are applicable to many other obj with submodular structures

Objective f (x) Condition

convex diff g(xi − xj) g(•) convex
conic quadratic

√
x⊤Qx Qij ≤ 0 & ...

rotated conic quadratic ∥x∥22/x0 x0 ≥ 0

Log-Exp log

(
n∑

i=1

exp(xi )

)
–

capped piecewise linear
n∑

i=1

min{(ai )⊤x , bi} ai ≥ 0

May need additional transformation techniques

Can appear as substructures in applications, e.g. time-varying
regression problems (Bertsimas et al. 2021), mean-risk problems, etc.

⇒ How to exploit submodularity? Convexification
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Recap

Summary

Sparse/robust MRF inference problems are polynomially solvable!

Fast computation of extremal basis

The computational approach is efficient in practice

Thanks for your listening!
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