On Polynomial-Time Solvability of Combinatorial Markov Random Fields

Shaoning Han
Department of Industrial \& Systems Engineering University of Southern California
IOS Conference, March 2024

Collaborators

Andres Gomez
ISE, USC

Jong-Shi Pang ISE, USC

Markov random field

Markov random field An MRF model is defined on an undirected graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, where

- random variable $X_{i}=x_{i}+\epsilon_{i}$ with $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma_{i}^{2}\right)$ for $i \in \mathcal{V}$
- X_{i} is only dependent on its neighbors and independent of others MRF inference Infer true values of $\left\{X_{i}\right\}_{i \in \mathcal{V}}$ from noisy observations $\left\{a_{i}\right\}_{i \in \mathcal{V}}$

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} \sum_{i \in \mathcal{V}} \underbrace{\frac{1}{\sigma_{i}^{2}}\left(x_{i}-a_{i}\right)^{2}}_{\text {fitness }}+\sum_{(i, j) \in \mathcal{E}} \underbrace{\frac{1}{\sigma_{i j}}\left(x_{i}-x_{j}\right)^{2}}_{\text {smoothness }}
$$

subject to $\ell_{i} \leq x_{i} \leq u_{i} \forall i \in \mathcal{V}$

Markov random field

Markov random field An MRF model is defined on an undirected graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, where

- random variable $X_{i}=x_{i}+\epsilon_{i}$ with $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma_{i}^{2}\right)$ for $i \in \mathcal{V}$
- X_{i} is only dependent on its neighbors and independent of others MRF inference Infer true values of $\left\{X_{i}\right\}_{i \in \mathcal{V}}$ from noisy observations $\left\{a_{i}\right\}_{i \in \mathcal{V}}$

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}} \sum_{i \in \mathcal{V}} \underbrace{\frac{1}{\sigma_{i}^{2}}\left(x_{i}-a_{i}\right)^{2}}_{\text {fitness }}+\sum_{(i, j) \in \mathcal{E}} \underbrace{\frac{1}{\sigma_{i j}}\left(x_{i}-x_{j}\right)^{2}}_{\text {smoothness }}
$$

subject to $\ell_{i} \leq x_{i} \leq u_{i} \forall i \in \mathcal{V}$

Markov random field

Markov random field An MRF model is defined on an undirected graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, where

- random variable $X_{i}=x_{i}+\epsilon_{i}$ with $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma_{i}^{2}\right)$ for $i \in \mathcal{V}$
- X_{i} is only dependent on its neighbors and independent of others MRF inference Infer true values of $\left\{X_{i}\right\}_{i \in \mathcal{V}}$ from noisy observations $\left\{a_{i}\right\}_{i \in \mathcal{V}}$

$$
\operatorname{minimize}_{\boldsymbol{x} \in \mathbb{R}^{n}} \sum_{i \in \mathcal{V}} \underbrace{\frac{1}{\sigma_{i}^{2}}\left(x_{i}-a_{i}\right)^{2}}_{\text {fitness }}+\sum_{(i, j) \in \mathcal{E}} \underbrace{\frac{1}{\sigma_{i j}}\left(x_{i}-x_{j}\right)^{2}}_{\text {smoothness }}
$$

subject to $\ell_{i} \leq x_{i} \leq u_{i} \forall i \in \mathcal{V}$

- x_{i} : true values (decision variables)
- $\sigma_{i j}$: correlation coefficients
- $\ell_{i} \in \mathbb{R} \cup\{-\infty\}, u_{i} \in \mathbb{R} \cup\{+\infty\}$

Markov random field

Markov random field An MRF model is defined on an undirected graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, where

- random variable $X_{i}=x_{i}+\epsilon_{i}$ with $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma_{i}^{2}\right)$ for $i \in \mathcal{V}$
- X_{i} is only dependent on its neighbors and independent of others MRF inference Infer true values of $\left\{X_{i}\right\}_{i \in \mathcal{V}}$ from noisy observations $\left\{a_{i}\right\}_{i \in \mathcal{V}}$

$$
\operatorname{minimize}_{\boldsymbol{x} \in \mathbb{R}^{n}} \sum_{i \in \mathcal{V}} \underbrace{\frac{1}{\sigma_{i}^{2}}\left(x_{i}-a_{i}\right)^{2}}_{\text {fitness }}+\sum_{(i, j) \in \mathcal{E}} \underbrace{\frac{1}{\sigma_{i j}}\left(x_{i}-x_{j}\right)^{2}}_{\text {smoothness }}
$$

subject to $\ell_{i} \leq x_{i} \leq u_{i} \forall i \in \mathcal{V}$

- Markov property
- Negative correlation
- Smoothness / pairwise similarity

Application

1D MRF

Figure: Weiner Process - Time Series

Temporal evolution

Application

2D MRF

(a) Image denoising

(b) Manufacturing (Schrunner et al. 2017)

Application

3D MRF

(a) Epidemiology (Morris et al. 2019)

(b) Criminology (Law et al. 2014)

Sparse MRF inference

Assumption the underlying statistical process is sparse

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \sum_{i \in \mathcal{V}} \frac{1}{\sigma_{i}^{2}} \underbrace{\left(x_{i}-a_{i}\right)^{2}}_{\text {fitness }}+\sum_{(i, j) \in \mathcal{E}} \frac{1}{\sigma_{i j}^{2}} \underbrace{\left(x_{i}-x_{j}\right)^{2}}_{\text {smoothness }}+\underbrace{\lambda\|\boldsymbol{x}\|_{0}}_{\text {sparsity }}
$$

$$
\text { subject to } \ell_{i} \leq x_{i} \leq u_{i} \forall i \in \mathcal{V}
$$

Sparse MRF inference

Assumption the underlying statistical process is sparse

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \sum_{i \in \mathcal{V}} \frac{1}{\sigma_{i}^{2}} \underbrace{\left(x_{i}-a_{i}\right)^{2}}_{\text {fitness }}+\sum_{(i, j) \in \mathcal{E}} \frac{1}{\sigma_{i j}^{2}} \underbrace{\left(x_{i}-x_{j}\right)^{2}}_{\text {smoothness }}+\underbrace{\lambda \sum_{i \in \mathcal{V}} z_{i}}_{\text {sparsity }}
$$

subject to $\ell_{i} z_{i} \leq x_{i} \leq u_{i} z_{i} \forall i \in \mathcal{V}$

$$
z \in\{0,1\}^{n}
$$

Define $0 \cdot(\pm \infty)=0$

- z_{i} indicates if x_{i} is zero: $\left[z_{i}=0 \Rightarrow x_{i}=0\right] \&\left[z_{i}=1 \Rightarrow \ell_{i} \leq x_{i} \leq u_{i}\right]$
- If $\ell_{i}=-\infty$ and $u_{i}=+\infty$, then $\ell_{i} z_{i} \leq x_{i} \leq u_{i} z_{i} \Leftrightarrow x_{i}\left(1-z_{i}\right)=0$

Robust MRF

Assumption a few observations a_{i} are corrupted by gross outliers

$$
\begin{aligned}
& \underset{\mathcal{U} \subseteq \mathcal{V}, x \in \mathbb{R}^{n}}{\operatorname{minimize}} \sum_{i \in \mathcal{V} \backslash \mathcal{U}} \frac{1}{\sigma_{i}^{2}} \underbrace{\left(x_{i}-a_{i}\right)^{2}}_{\text {fitness }}+\sum_{(i, j) \in \mathcal{E}} \frac{1}{\sigma_{i j}^{2}} \underbrace{\left(x_{i}-x_{j}\right)^{2}}_{\text {smoothness }}+\underbrace{\lambda|\mathcal{U}|}_{\text {robustness }} \\
& \text { subject to } \ell_{i} \leq x_{i} \leq u_{i} \forall i \in \mathcal{V}
\end{aligned}
$$

- \mathcal{U} : the set of outliers

Introducing binary variables $\left[z_{i}=1 \Leftrightarrow i \in \mathcal{U}\right] \Rightarrow$ a MIP formulation

Robust MRF inference

Assumption a few observations a_{i} are corrupted by gross outliers

$$
\underset{z, w, x \in \mathbb{R}^{n}}{\operatorname{minimize}} \sum_{i \in \mathcal{V}} \frac{1}{\sigma_{i}^{2}} \underbrace{\left(x_{i}-a_{i}-w_{i}\right)^{2}}_{\text {fitness }}+\sum_{(i, j) \in \mathcal{E}} \frac{1}{\sigma_{i j}^{2}} \underbrace{\left(x_{i}-x_{j}\right)^{2}}_{\text {smoothness }}+\underbrace{\lambda \sum_{i \in \mathcal{V}} z_{i}}_{\text {robustness }}
$$

subject to $\ell_{i} \leq x_{i} \leq u_{i} \forall i \in \mathcal{V}$

$$
w_{i}\left(1-z_{i}\right)=0 \forall i \in \mathcal{V}, z \in\{0,1\}^{n}
$$

Equivalence

- $z_{i}=0: w_{i}=0 \Rightarrow a_{i}$ is not an outlier
- $z_{i}=1: w_{i}=a_{i}-x_{i}$ at the optimal solution $\Rightarrow a_{i}$ is an outlier

Robust MRF inference

Assumption a few observations a_{i} are corrupted by gross outliers

$$
\underset{z, w, x \in \mathbb{R}^{n}}{\operatorname{minimize}} \sum_{i \in \mathcal{V}} \frac{1}{\sigma_{i}^{2}} \underbrace{\left(x_{i}-a_{i}-w_{i}\right)^{2}}_{\text {fitness }}+\sum_{(i, j) \in \mathcal{E}} \frac{1}{\sigma_{i j}^{2}} \underbrace{\left(x_{i}-x_{j}\right)^{2}}_{\text {smoothness }}+\underbrace{\lambda \sum_{i \in \mathcal{V}} z_{i}}_{\text {robustness }}
$$

subject to $\ell_{i} \leq x_{i} \leq u_{i} \forall i \in \mathcal{V}$

$$
\tilde{\ell} z_{i} \leq w_{i} \leq \tilde{u} z_{i}, z \in\{0,1\}^{n}
$$

Equivalence

- $z_{i}=0: w_{i}=0 \Rightarrow a_{i}$ is not an outlier
- $z_{i}=1: w_{i}=a_{i}-x_{i}$ at the optimal solution $\Rightarrow a_{i}$ is an outlier
- $\tilde{\ell}=-\infty$ and $\tilde{u}=+\infty$

1D Example - combinatorial MRF

Our contribution

Sparse and robust MRF can be put in the form

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}, z \in\{0,1\}^{n}}\left\{\frac{1}{2} x^{\top} Q x+b^{\top} x+c^{\top} z: \ell_{i} z_{i} \leq x_{i} \leq u_{i} z_{i} \forall i\right\},
$$

where $Q \succeq 0$

- In general, the problem is NP-hard, e.g., if $f(x)=$ the obj of OLS

Our contribution

Sparse and robust MRF can be put in the form

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}, z \in\{0,1\}^{n}}\left\{\frac{1}{2} x^{\top} Q x+b^{\top} x+c^{\top} z: \ell_{i} z_{i} \leq x_{i} \leq u_{i} z_{i} \forall i\right\}
$$

where $Q \succeq 0$ and $Q_{i j} \leq 0 \forall i \neq j$

Theorem (Polynomial solvability)

The problem of sparse/robust MRF can be solved as a binary submodular minimization problem and thus is (strongly) polynomially solvable.

Solution path / hyperparameter selection

Question When the sparsity pattern (or the number of outliers) are unknown, how to choose λ in

$$
\operatorname{minimum}_{\ell \leq x \leq u} \frac{1}{2} x^{\top} Q x+b^{\top} x+\lambda\|x\|_{0}
$$

Solution path / hyperparameter selection

Question When the sparsity pattern (or the number of outliers) are unknown, how to choose λ in

$$
p(\lambda) \stackrel{\text { def }}{=} \operatorname{minimum}_{\ell \leq x \leq u} \frac{1}{2} x^{\top} Q x+b^{\top} x+\lambda\|x\|_{0}
$$

Answer Compute all possible $p(\lambda)$ and choose a desired one! (AIC, etc.)

Solution path / hyperparameter selection

Question When the sparsity pattern (or the number of outliers) are unknown, how to choose λ in

$$
p(\lambda) \stackrel{\text { def }}{=} \operatorname{minimum}_{\ell \leq x \leq u} \frac{1}{2} x^{\top} Q x+b^{\top} x+\lambda\|x\|_{0}
$$

Answer Compute all possible $p(\lambda)$ and choose a desired one! (AIC, etc.)

Solution path / hyperparameter selection

Question When the sparsity pattern (or the number of outliers) are unknown, how to choose λ in

$$
p(\lambda) \stackrel{\text { def }}{=} \operatorname{minimum}_{\ell \leq x \leq u} \frac{1}{2} x^{\top} Q x+b^{\top} x+\lambda\|x\|_{0}
$$

Answer Compute all possible $p(\lambda)$ and choose a desired one! (AIC, etc.)

Proposition

Solution path $p(\bullet)$ is a concave increasing piecewise affine function of λ, which consists of at most $n+1$ pieces. Moreover, it can be computed in polynomial time.

Free of hyper-parameter tuning!

Experimental results - robust MRF

Submodular v.s. MIP

Figure: Number of instances solved as a function of time

- Solvability: Submodular 92\% versus MIP 8\%
- Solution time: 700x speed-up!

A touch of math

We will

- show sparse/robust MRF is theoretically tractable by reducing it into a binary submodular minimization problem
- make sparse/robust MRF practically tractable by designing a parametric pivoting method to efficiently compute extremal bases

Lattices

Meet and Join Given $x, y \in \mathbb{R}^{n}$, define

- Meet: $x \wedge y \stackrel{\text { def }}{=}\left(\min \left\{x_{i}, y_{i}\right\}\right)_{i}$
- Join: $x \vee y \stackrel{\text { def }}{=}\left(\max \left\{x_{i}, y_{i}\right\}\right)_{i}$

Lattice A set $\mathcal{L} \subset \mathbb{R}^{n}$ is a lattice if $[x, y \in \mathcal{L} \Rightarrow x \vee y, x \wedge y \in \mathcal{L}]$

Lattices

Meet and Join Given $x, y \in \mathbb{R}^{n}$, define

- Meet: $x \wedge y \stackrel{\text { def }}{=}\left(\min \left\{x_{i}, y_{i}\right\}\right)_{i}$
- Join: $x \vee y \stackrel{\text { def }}{=}\left(\max \left\{x_{i}, y_{i}\right\}\right)_{i}$

Lattice A set $\mathcal{L} \subset \mathbb{R}^{n}$ is a lattice if $[x, y \in \mathcal{L} \Rightarrow x \vee y, x \wedge y \in \mathcal{L}]$

Submodularity

Submodularity Given a lattice $\mathcal{L} \subseteq \mathbb{R}^{n}$, a function $f: \mathcal{L} \rightarrow \mathbb{R}$ is submodular if

$$
f(x)+f(y) \geq f(x \wedge y)+f(x \vee y) \forall x, y \in \mathcal{L}
$$

Remarks

- If $\mathcal{L} \subseteq\{0,1\}^{n}$, then f is a binary/set submodular function
- If $f \in \mathcal{C}^{2}\left(\mathbb{R}^{n}\right)$, submodularity over $\mathbb{R}^{n} \Leftrightarrow \frac{\partial^{2} f}{\partial y_{j} \partial y_{j}}(y) \leq 0 \forall i \neq j$

Submodularity

Submodularity Given a lattice $\mathcal{L} \subseteq \mathbb{R}^{n}$, a function $f: \mathcal{L} \rightarrow \mathbb{R}$ is submodular if

$$
f(x)+f(y) \geq f(x \wedge y)+f(x \vee y) \forall x, y \in \mathcal{L}
$$

Remarks

- If $\mathcal{L} \subseteq\{0,1\}^{n}$, then f is a binary/set submodular function
- If $f \in \mathcal{C}^{2}\left(\mathbb{R}^{n}\right)$, submodularity over $\mathbb{R}^{n} \Leftrightarrow \frac{\partial^{2} f}{\partial y_{j} \partial y_{j}}(y) \leq 0 \forall i \neq j$

Examples

- $n=1 \Rightarrow f(x)$ is submodular
- $f(x)=c^{\top} x$ is submodular
- $f(x)=x^{\top}\left[\begin{array}{ccc}5 & -1 & -3 \\ -1 & 3 & -2 \\ -3 & -2 & 7\end{array}\right] x$ is submodular $\left(Q_{i j} \leq 0\right.$ for all $\left.i \neq j\right)$

Submodularity

Submodularity Given a lattice $\mathcal{L} \subseteq \mathbb{R}^{n}$, a function $f: \mathcal{L} \rightarrow \mathbb{R}$ is submodular if

$$
f(x)+f(y) \geq f(x \wedge y)+f(x \vee y) \forall x, y \in \mathcal{L}
$$

Remarks

- If $\mathcal{L} \subseteq\{0,1\}^{n}$, then f is a binary/set submodular function
- If $f \in \mathcal{C}^{2}\left(\mathbb{R}^{n}\right)$, submodularity over $\mathbb{R}^{n} \Leftrightarrow \frac{\partial^{2} f}{\partial y_{j} \partial y_{j}}(y) \leq 0 \forall i \neq j$

Key observation

Lemma (Topkis (1978))

Given a lattice $\mathcal{L} \in \mathbb{R}^{m} \times \mathbb{R}^{n}$ and a submodular function $f: \mathcal{L} \rightarrow \mathbb{R}$, the marginal function

$$
v(z) \stackrel{\text { def }}{=} \underset{x \in \mathbb{R}^{m}}{\operatorname{minimum}}\{f(x, z):(x, z) \in \mathcal{L}\}
$$

is submodular on the lattice $\operatorname{proj}_{z} \xlongequal{\text { def }}\{z: \exists x$ s.t. $(x, z) \in \mathcal{L}\}$.

Nonnegative case

Assume $\ell \in \mathbb{R}_{+}^{n}$ and get back to

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}, z \in\{0,1\}^{n}}\left\{\frac{1}{2} x^{\top} Q x+b^{\top} x+c^{\top} z: \ell_{i} z_{i} \leq x_{i} \leq u_{i} z_{i} \forall i\right\}
$$

Objective

$$
f(x)+c^{\top} z:=\frac{1}{2} x^{\top} Q x+b^{\top} x+c^{\top} z
$$

Feasible region $\prod_{i \in \mathcal{V}}\left\{\left(x_{i}, z_{i}\right) \in \mathbb{R} \times\{0,1\}: \ell_{i} z_{i} \leq x_{i} \leq z_{i} u_{i}\right\}$

Nonnegative case

Assume $\ell \in \mathbb{R}_{+}^{n}$ and get back to

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}, z \in\{0,1\}^{n}}\left\{\frac{1}{2} x^{\top} Q x+b^{\top} x+c^{\top} z: \ell_{i} z_{i} \leq x_{i} \leq u_{i} z_{i} \forall i\right\}
$$

Objective is submodular due to $Q_{i j} \leq 0 \forall i \neq j$

$$
f(x)+c^{\top} z:=\frac{1}{2} x^{\top} Q x+b^{\top} x+c^{\top} z
$$

Feasible region $\prod_{i \in \mathcal{V}}\left\{\left(x_{i}, z_{i}\right) \in \mathbb{R} \times\{0,1\}: \ell_{i} z_{i} \leq x_{i} \leq z_{i} u_{i}\right\}$

Nonnegative case

Assume $\ell \in \mathbb{R}_{+}^{n}$ and get back to

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}, z \in\{0,1\}^{n}}\left\{\frac{1}{2} x^{\top} Q x+b^{\top} x+c^{\top} z: \ell_{i} z_{i} \leq x_{i} \leq u_{i} z_{i} \forall i\right\}
$$

Objective is submodular due to $Q_{i j} \leq 0 \forall i \neq j$

$$
f(x)+c^{\top} z:=\frac{1}{2} x^{\top} Q x+b^{\top} x+c^{\top} z
$$

Feasible region $\prod_{i \in \mathcal{V}}\left\{\left(x_{i}, z_{i}\right) \in \mathbb{R} \times\{0,1\}: \ell_{i} z_{i} \leq x_{i} \leq z_{i} u_{i}\right\}$

Nonnegative case

Assume $\ell \in \mathbb{R}_{+}^{n}$ and get back to

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}, z \in\{0,1\}^{n}}\left\{\frac{1}{2} x^{\top} Q x+b^{\top} x+c^{\top} z: \ell_{i} z_{i} \leq x_{i} \leq u_{i} z_{i} \forall i\right\}
$$

Objective is submodular due to $Q_{i j} \leq 0 \forall i \neq j$

$$
f(x)+c^{\top} z:=\frac{1}{2} x^{\top} Q x+b^{\top} x+c^{\top} z
$$

Feasible region is a lattice due to $\ell \geq 0$

Nonnegative case

Assume $\ell \in \mathbb{R}_{+}^{n}$ and get back to

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}, z \in\{0,1\}^{n}}\left\{\frac{1}{2} x^{\top} Q x+b^{\top} x+c^{\top} z: \ell_{i} z_{i} \leq x_{i} \leq u_{i} z_{i} \forall i\right\}
$$

Objective is submodular due to $Q_{i j} \leq 0 \forall i \neq j$

$$
f(x)+c^{\top} z:=\frac{1}{2} x^{\top} Q x+b^{\top} x+c^{\top} z
$$

Feasible region is a lattice due to $\ell \geq 0$
Thus,

$$
(\star) \Leftrightarrow \underset{\boldsymbol{z} \in\{0,1\}^{n}}{\operatorname{minimize}} v(\boldsymbol{z})+\boldsymbol{c}^{\top} \boldsymbol{z}
$$

where $v(\boldsymbol{z})=\underset{\boldsymbol{x} \in \mathbb{R}^{n}}{\operatorname{minimum}}\{f(\boldsymbol{x}): \boldsymbol{\ell} \circ \boldsymbol{z} \leq \boldsymbol{x} \leq \boldsymbol{u} \circ \boldsymbol{z}\}$ is a binary
submodular function and can be evaluated by solving a convex program

General case

Assume $\ell \notin \mathbb{R}_{+}^{n}$,

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}, z \in\{0,1\}^{n}}\left\{\frac{1}{2} x^{\top} Q x+b^{\top} x+c^{\top} z: \ell_{i} z_{i} \leq x_{i} \leq u_{i} z_{i} \forall i\right\}
$$

Issue the feasible region is not a lattice if $\ell_{i}<0$

Figure: Region of $\left\{\left(x_{i}, z_{i}\right) \in \mathbb{R} \times\{0,1\}: \ell_{i} z_{i} \leq x_{i} \leq z_{i} u_{i}\right\}$

General case

Assume $\ell \notin \mathbb{R}_{+}^{n}$,

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}, z \in\{0,1\}^{n}}\left\{\frac{1}{2} x^{\top} Q x+b^{\top} x+c^{\top} z: \ell_{i} z_{i} \leq x_{i} \leq u_{i} z_{i} \forall i\right\}
$$

Issue the feasible region is not a lattice if $\ell_{i}<0$ Idea If $\ell_{i}<0$ and $u_{i}>0$, then

$$
\ell_{i} z_{i} \leq x_{i} \leq u_{i} z_{i}, z_{i} \in\{0,1\} \Leftrightarrow\left\{\begin{array}{l}
z_{i}^{+} \in\{0,1\}, z_{i}^{-} \in\{0,1\} \\
\ell_{i}\left(1-z_{i}^{-}\right) \leq x_{i} \leq u_{i} z_{i}^{+} \\
z_{i}^{-} \geq z_{i}^{+}
\end{array}\right.
$$

- Split z_{i} into two parts z_{i}^{+}and $\left(1-z_{i}^{-}\right)$

General case

Assume $\ell \notin \mathbb{R}_{+}^{n}$,

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}, z \in\{0,1\}^{n}}\left\{\frac{1}{2} x^{\top} Q x+b^{\top} x+c^{\top} z: \ell_{i} z_{i} \leq x_{i} \leq u_{i} z_{i} \forall i\right\}
$$

Issue the feasible region is not a lattice if $\ell_{i}<0$ Idea If $\ell_{i}<0$ and $u_{i}>0$, then

$$
\ell_{i} z_{i} \leq x_{i} \leq u_{i} z_{i}, z_{i} \in\{0,1\} \Leftrightarrow\left\{\begin{array}{l}
z_{i}^{+} \in\{0,1\}, z_{i}^{-} \in\{0,1\} \\
\ell_{i}\left(1-z_{i}^{-}\right) \leq x_{i} \leq u_{i} z_{i}^{+} \\
z_{i}^{-} \geq z_{i}^{+}
\end{array}\right.
$$

- Split z_{i} into two parts z_{i}^{+}and $\left(1-z_{i}^{-}\right)$
- $z_{i}^{+}=0 \Rightarrow\left[x_{i}\right]_{+} \stackrel{\text { def }}{=} \max \left\{x_{i}, 0\right\}=0 \Leftrightarrow x_{i} \leq 0$

General case

Assume $\ell \notin \mathbb{R}_{+}^{n}$,

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}, z \in\{0,1\}^{n}}\left\{\frac{1}{2} x^{\top} Q x+b^{\top} x+c^{\top} z: \ell_{i} z_{i} \leq x_{i} \leq u_{i} z_{i} \forall i\right\}
$$

Issue the feasible region is not a lattice if $\ell_{i}<0$ Idea If $\ell_{i}<0$ and $u_{i}>0$, then

$$
\ell_{i} z_{i} \leq x_{i} \leq u_{i} z_{i}, z_{i} \in\{0,1\} \Leftrightarrow\left\{\begin{array}{l}
z_{i}^{+} \in\{0,1\}, z_{i}^{-} \in\{0,1\} \\
\ell_{i}\left(1-z_{i}^{-}\right) \leq x_{i} \leq u_{i} z_{i}^{+} \\
z_{i}^{-} \geq z_{i}^{+}
\end{array}\right.
$$

- Split z_{i} into two parts z_{i}^{+}and $\left(1-z_{i}^{-}\right)$
- $z_{i}^{+}=0 \Rightarrow\left[x_{i}\right]_{+} \stackrel{\text { def }}{=} \max \left\{x_{i}, 0\right\}=0 \Leftrightarrow x_{i} \leq 0$
- $1-z_{i}^{-}=0 \Rightarrow\left[x_{i}\right]_{-} \stackrel{\text { def }}{=} \max \left\{-x_{i}, 0\right\}=0 \Leftrightarrow x_{i} \geq 0$

General case

Assume $\ell \notin \mathbb{R}_{+}^{n}$,

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}, z \in\{0,1\}^{n}}\left\{\frac{1}{2} x^{\top} Q x+b^{\top} x+c^{\top} z: \ell_{i} z_{i} \leq x_{i} \leq u_{i} z_{i} \forall i\right\}
$$

Issue the feasible region is not a lattice if $\ell_{i}<0$ Idea If $\ell_{i}<0$ and $u_{i}>0$, then

$$
\ell_{i} z_{i} \leq x_{i} \leq u_{i} z_{i}, z_{i} \in\{0,1\} \Leftrightarrow\left\{\begin{array}{l}
z_{i}^{+} \in\{0,1\}, z_{i}^{-} \in\{0,1\} \\
\ell_{i}\left(1-z_{i}^{-}\right) \leq x_{i} \leq u_{i} z_{i}^{+} \\
z_{i}^{-} \geq z_{i}^{+}
\end{array}\right.
$$

- Split z_{i} into two parts z_{i}^{+}and $\left(1-z_{i}^{-}\right)$
- $z_{i}^{+}=0 \Rightarrow\left[x_{i}\right]_{+} \stackrel{\text { def }}{=} \max \left\{x_{i}, 0\right\}=0 \Leftrightarrow x_{i} \leq 0$
- $1-z_{i}^{-}=0 \Rightarrow\left[x_{i}\right]_{-} \stackrel{\text { def }}{=} \max \left\{-x_{i}, 0\right\}=0 \Leftrightarrow x_{i} \geq 0$
- $\left[x_{i}\right]_{+}$and $\left[x_{i}\right]_{-}$can not be both nonzero $\Rightarrow z_{i}^{+}+\left(1-z_{i}^{-}\right) \leq 1$

General case

Assume $\ell \notin \mathbb{R}_{+}^{n}$,

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}, z \in\{0,1\}^{n}}\left\{\frac{1}{2} x^{\top} Q x+b^{\top} x+c^{\top} z: \ell_{i} z_{i} \leq x_{i} \leq u_{i} z_{i} \forall i\right\}
$$

Issue the feasible region is not a lattice if $\ell_{i}<0$ Idea If $\ell_{i}<0$ and $u_{i}>0$, then

$$
\ell_{i} z_{i} \leq x_{i} \leq u_{i} z_{i}, z_{i} \in\{0,1\} \Leftrightarrow\left\{\begin{array}{l}
z_{i}^{+} \in\{0,1\}, z_{i}^{-} \in\{0,1\} \\
\ell_{i}\left(1-z_{i}^{-}\right) \leq x_{i} \leq u_{i} z_{i}^{+} \\
z_{i}^{-} \geq z_{i}^{+}
\end{array} \Rightarrow\right. \text { lattice }
$$

- Split z_{i} into two parts z_{i}^{+}and $\left(1-z_{i}^{-}\right)$
- $z_{i}^{+}=0 \Rightarrow\left[x_{i}\right]_{+} \stackrel{\text { def }}{=} \max \left\{x_{i}, 0\right\}=0 \Leftrightarrow x_{i} \leq 0$
- $1-z_{i}^{-}=0 \Rightarrow\left[x_{i}\right]_{-} \stackrel{\text { def }}{=} \max \left\{-x_{i}, 0\right\}=0 \Leftrightarrow x_{i} \geq 0$
- $\left[x_{i}\right]_{+}$and $\left[x_{i}\right]_{-}$can not be both nonzero $\Rightarrow z_{i}^{+}+\left(1-z_{i}^{-}\right) \leq 1$

General case

For simplicity, assume $\ell<\mathbf{0}<u$. Substituting out z_{i},

$$
\begin{gathered}
\underset{\boldsymbol{x}, \boldsymbol{z}^{+}, z^{-} \in \mathbb{R}^{n}}{\operatorname{minimize}} \\
\text { subject to } \ell_{i} x^{\top} Q x+b^{\top} x+c^{\top}\left(z^{+}+\mathbf{1}-z_{i}^{-}\right) \leq x_{i} \leq u_{i} z_{i}^{+} \forall i \\
z^{-} \geq z^{+}, z^{+}, z^{-} \in\{0,1\}^{n}
\end{gathered}
$$

General case

For simplicity, assume $\ell<\mathbf{0}<u$. Substituting out z_{i},

$$
\begin{aligned}
\underset{x}{\min , z^{+}, z^{-} \in \mathbb{R}^{n}} & \frac{1}{2} x^{\top} Q x+b^{\top} x+c^{\top}\left(z^{+}+\mathbf{1}-z^{-}\right) \\
\text {subject to } & \ell_{i}\left(1-z_{i}^{-}\right) \leq x_{i} \leq u_{i} z_{i}^{+} \forall i \\
& \frac{z \geq z^{+}}{}, z^{+}, z^{-} \in\{0,1\}^{n}
\end{aligned}
$$

General case

For simplicity, assume $\ell<\mathbf{0}<u$. Substituting out z_{i},

$$
\begin{gathered}
\underset{x, z^{+}, z^{-} \in \mathbb{R}^{n}}{\operatorname{minimize}} \\
\text { subject to } \\
\frac{1}{2} x^{\top} Q x+b^{\top} x+c^{\top}\left(z^{+}+\mathbf{1}-z^{-}\right) \\
\left.z_{i}^{-}\right) \leq z_{i} \leq z_{i} z_{i}^{+} \forall i \\
z^{+}, z^{-} \in\{0,1\}^{n}
\end{gathered}
$$

General case

For simplicity, assume $\ell<\mathbf{0}<u$. Substituting out z_{i},

$$
\begin{aligned}
& \underset{x, z^{+}, z^{-} \in \mathbb{R}^{n}}{\operatorname{minimize}} \frac{1}{2} x^{\top} Q x+b^{\top} x+c^{\top}\left(z^{+}+\mathbf{1}-z^{-}\right) \\
& \text {subject to } \ell_{i}\left(1-z_{i}^{-}\right) \leq x_{i} \leq u_{i} z_{i}^{+} \forall i \\
& z \geq z^{+}, z^{+}, z^{-} \in\{0,1\}^{n}
\end{aligned}
$$

General case

For simplicity, assume $\ell<\mathbf{0}<u$. Substituting out z_{i},

$$
\begin{aligned}
& \underset{x, z^{+}, z^{-} \in \mathbb{R}^{n}}{\operatorname{minimize}} \frac{1}{2} x^{\top} Q x+b^{\top} x+c^{\top}\left(z^{+}+\mathbf{1}-z^{-}\right) \\
& \text {subject to } \ell_{i}\left(1-z_{i}^{-}\right) \leq x_{i} \leq u_{i} z_{i}^{+} \forall i \\
& z \geq z^{+}, z^{+}, z^{-} \in\{0,1\}^{n}
\end{aligned}
$$

General case

For simplicity, assume $\ell<\mathbf{0}<u$. Substituting out z_{i},

$$
\begin{align*}
& \underset{x, z^{+}, z^{-} \in \mathbb{R}^{n}}{\operatorname{minimize}} \frac{1}{2} x^{\top} Q x+b^{\top} x+c^{\top}\left(z^{+}+\mathbf{1}-z^{-}\right) \\
& \text {subject to } \ell_{i}\left(1-z_{i}^{-}\right) \leq x_{i} \leq u_{i} z_{i}^{+} \forall i \\
& z \geq z^{+}, z^{+}, z^{-} \in\{0,1\}^{n}
\end{align*}
$$

A mixed-integer submodular minimization problem! \Rightarrow

General case

For simplicity, assume $\ell<\mathbf{0}<u$. Substituting out z_{i},

$$
\begin{align*}
& \underset{x}{\min , z^{+}, z^{-} \in \mathbb{R}^{n}} \frac{1}{2} x^{\top} Q x+b^{\top} x+c^{\top}\left(z^{+}+\mathbf{1}-z^{-}\right) \\
& \text {subject to } \ell \ell_{i}\left(1-z_{i}^{-}\right) \leq x_{i} \leq u_{i} z_{i}^{+} \forall i \\
& z \geq z^{-}, z^{+}, z^{-} \in\{0,1\}^{n}
\end{align*}
$$

A mixed-integer submodular minimization problem! \Rightarrow

$$
(\star) \Leftrightarrow \underset{\left(z^{+}, z^{-}\right) \in\{0,1\}^{2 n}}{\operatorname{minimize}} v\left(z^{+}, z^{-}\right)+c^{\top}\left(z^{+}+\mathbf{1}-z^{-}\right)
$$

where

$$
v\left(z^{+}, z^{-}\right) \stackrel{\text { def }}{=} \underset{x \in \mathbb{R}^{n}}{\operatorname{minimum}}\left\{\frac{1}{2} x^{\top} Q x+b^{\top} x: \ell_{i}\left(1-z_{i}^{-}\right) \leq x_{i} \leq u_{i} z_{i}^{+} \forall i\right\}
$$

is binary submodular and can be evaluated by solving a convex program

Implementation

Fact All known algorithms for minimizing binary submodular functions

$$
\operatorname{minimize}_{z \in\{0,1\}^{n}} v(z)
$$

are required to compute extremal basis at each iteration Extremal basis Assume at each iteration, the current solution is sorted as $\bar{z}_{1} \geq \bar{z}_{2} \geq \cdots \geq \bar{z}_{n}$. The extremal basis ${ }^{6}$ (EB) is defined as

$$
\left\{v\left(\mathbf{1}_{[k]}\right)\right\}_{k=0}^{n},
$$

where $\mathbf{1}_{[k]} \stackrel{\text { def }}{(}(\underbrace{1,1, \ldots, 1}_{k \text { ones }}, 0, \ldots, 0)$

[^0]
Implementation

Fact All known algorithms for minimizing binary submodular functions

$$
\operatorname{minimize}_{z \in\{0,1\}^{n}} v(z)
$$

are required to compute extremal basis at each iteration Extremal basis Assume at each iteration, the current solution is sorted as $\bar{z}_{1} \geq \bar{z}_{2} \geq \cdots \geq \bar{z}_{n}$. The extremal basis ${ }^{6}$ (EB) is defined as

$$
\left\{v\left(\mathbf{1}_{[k]}\right)\right\}_{k=0}^{n},
$$

where $\mathbf{1}_{[k]} \stackrel{\text { def }}{=}(\underbrace{1,1, \ldots, 1}_{k \text { ones }}, 0, \ldots, 0)$
Example If $n=3$ and $\bar{z}_{1} \geq \bar{z}_{2} \geq \bar{z}_{3}$, then one needs to compute

$$
v(0,0,0), v(1,0,0), v(1,1,0), v(1,1,1)
$$

[^1]
Fast computation of extremal basis

In the context of sparse/robust MRF (assume $\ell=\mathbf{0}$ for simplicity)
$v\left(\mathbf{1}_{[k]}\right)=\underset{y \in \mathbb{R}^{k}}{\operatorname{minimum}}\left\{f\left(y_{1}, y_{2}, \ldots, y_{k}, 0, \ldots, 0\right): 0 \leq y_{i} \leq u_{i} \forall 1 \leq i \leq k\right\}$

- $f(y)=\frac{1}{2} y^{\top} Q y+b^{\top} y \Rightarrow$ convex quadratic program

Fast computation of extremal basis

In the context of sparse/robust MRF (assume $\ell=\mathbf{0}$ for simplicity)
$v\left(\mathbf{1}_{[k]}\right)=\underset{y \in \mathbb{R}^{k}}{\operatorname{minimum}}\left\{f\left(y_{1}, y_{2}, \ldots, y_{k}, 0, \ldots, 0\right): 0 \leq y_{i} \leq u_{i} \forall 1 \leq i \leq k\right\}$

- $f(y)=\frac{1}{2} y^{\top} Q y+b^{\top} y \Rightarrow$ solving n QPs per iter! $\left[\mathcal{O}\left(n^{4}\right)\right.$ operations $]$

- Time for computing EB ■ Others
- As $n=500,45$ seconds/iter for computing $\mathrm{EB} \geq 95 \%$ total time

Fast computation of extremal basis

In the context of sparse/robust MRF (assume $\ell=\mathbf{0}$ for simplicity)
$v\left(\mathbf{1}_{[k]}\right)=\underset{y \in \mathbb{R}^{k}}{\operatorname{minimum}}\left\{f\left(y_{1}, y_{2}, \ldots, y_{k}, 0, \ldots, 0\right): 0 \leq y_{i} \leq u_{i} \forall 1 \leq i \leq k\right\}$

- $f(y)=\frac{1}{2} y^{\top} Q y+b^{\top} y \Rightarrow$ solving n QPs per iter! $\left[\mathcal{O}\left(n^{4}\right)\right.$ operations $]$

- Time for computing EB $_$Others

Question: how to efficiently compute $\left\{v\left(\mathbf{1}_{[k]}\right)\right\}_{k=0}^{n}$ in this context?

Fast computation of extremal basis

Idea Assume \bar{y}^{k} is the optimal solution to k-th subproblem. Consider the parametric optimization problem

$$
\begin{aligned}
& v_{k}\left(y_{k+1}\right)=\operatorname{minimum}_{0 \leq y \leq u_{[k]}} f(\underbrace{y_{1}, y_{2}, \ldots, y_{k}}_{\text {decision variables }}, \underbrace{y_{k+1}}_{\text {parameter }}, 0, \ldots, 0) \\
& y^{k}\left(y_{k+1}\right)=\underset{0 \leq y \leq u_{[k]}}{\arg \min } f\left(y_{1}, y_{2}, \ldots, y_{k}, y_{k+1}, 0, \ldots, 0\right)
\end{aligned}
$$

Observations

- $y^{k}(0)=\bar{y}^{k}$
- $v\left(\mathbf{1}_{[k+1]}\right)=\operatorname{minimum}_{0 \leq y_{k+1} \leq u_{k+1}} v_{k}\left(y_{k+1}\right)$

Fast computation of extremal basis

Idea Assume \bar{y}^{k} is the optimal solution to k-th subproblem. Consider the parametric optimization problem

$$
\begin{aligned}
& v_{k}\left(y_{k+1}\right)=\operatorname{minimum}_{0 \leq y \leq u_{[k]}} f(\underbrace{y_{1}, y_{2}, \ldots, y_{k}}_{\text {decision variables }}, \underbrace{y_{k+1}}_{\text {parameter }}, 0, \ldots, 0) \\
& y^{k}\left(y_{k+1}\right)=\underset{0 \leq y \leq u_{[k]}}{\arg \min } f\left(y_{1}, y_{2}, \ldots, y_{k}, y_{k+1}, 0, \ldots, 0\right)
\end{aligned}
$$

Observations

- $y^{k}(0)=\bar{y}^{k}$
- $v\left(\mathbf{1}_{[k+1]}\right)=\operatorname{minimum}_{0 \leq y_{k+1} \leq u_{k+1}} v_{k}\left(y_{k+1}\right)$
- $y^{k}\left(y_{k+1}^{\prime}\right) \leq y^{k}\left(y_{k+1}^{\prime \prime}\right)$ if $y_{k+1}^{\prime} \leq y_{k+1}^{\prime \prime}$. (Isotonicity)

Strategy Increase y_{k+1} from 0 and track $y^{k}\left(y_{k+1}\right)$ until find optimal y_{k+1}

Fast computation of extremal basis

Example Consider

$$
f(x)=\frac{1}{2} x^{\top}\left[\begin{array}{ccc}
5 & -1 & -3 \\
-1 & 3 & -2 \\
-3 & -2 & 7
\end{array}\right] x-\sum_{i=1}^{3} x_{i}, \quad \ell=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad u=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Trajectory of x_{1}, x_{2} and x_{3} in terms of driving variables

Fast computation of extremal basis

Example Consider

$$
f(x)=\frac{1}{2} x^{\top}\left[\begin{array}{ccc}
5 & -1 & -3 \\
-1 & 3 & -2 \\
-3 & -2 & 7
\end{array}\right] x-\sum_{i=1}^{3} x_{i}, \quad \ell=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad u=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Trajectory of x_{1}, x_{2} and x_{3} in terms of driving variables

- Step 1: to compute

$$
v(1,0,0)=\underset{0<x<1}{\operatorname{minimum}} f\left(x_{1}, 0,0\right),
$$

x_{1} is increased from 0

Fast computation of extremal basis

Example Consider

$$
f(x)=\frac{1}{2} x^{\top}\left[\begin{array}{ccc}
5 & -1 & -3 \\
-1 & 3 & -2 \\
-3 & -2 & 7
\end{array}\right] x-\sum_{i=1}^{3} x_{i}, \quad \ell=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad u=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Trajectory of x_{1}, x_{2} and x_{3} in terms of driving variables

- Step 2: to compute

$$
v(1,1,0)=\operatorname{minimize}_{0 \leq x \leq 1} f\left(x_{1}, x_{2}, 0\right)
$$

use x_{2} to drive the increase of x_{1}

Fast computation of extremal basis

Example Consider

$$
f(x)=\frac{1}{2} x^{\top}\left[\begin{array}{ccc}
5 & -1 & -3 \\
-1 & 3 & -2 \\
-3 & -2 & 7
\end{array}\right] x-\sum_{i=1}^{3} x_{i}, \quad \ell=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad u=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Trajectory of x_{1}, x_{2} and x_{3} in terms of driving variables

- Step 3: to compute $v(1,1,1)=\operatorname{minimize}_{0 \leq x \leq 1} f\left(x_{1}, x_{2}, x_{3}\right)$, use x_{3} to drive the increase of x_{1} and x_{2}

Fast computation of extremal basis

Example Consider

$$
f(x)=\frac{1}{2} x^{\top}\left[\begin{array}{ccc}
5 & -1 & -3 \\
-1 & 3 & -2 \\
-3 & -2 & 7
\end{array}\right] x-\sum_{i=1}^{3} x_{i}, \quad \ell=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad u=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Trajectory of x_{1}, x_{2} and x_{3} in terms of driving variables

- All subproblems

$$
\begin{aligned}
& v(1,0,0), v(1,1,0) \text { and } v(1,1,1) \\
& \text { are solved }
\end{aligned}
$$

Fast computation of extremal basis

Proposition

With fast computation strategy, in each iteration, the sequence $\left\{v\left(\mathbf{1}_{[k]}\right)\right\}_{i=0}^{n}$ can be computed in $\mathcal{O}\left(n^{3}\right)$.

- 44.92 seconds v.s. 1.2 seconds: $\approx 40 x$ faster!

Extension

Results are applicable to many other obj with submodular structures

	Objective $f(x)$	Condition		
convex diff	$g\left(x_{i}-x_{j}\right)$	$g(\bullet)$ convex		
conic quadratic	$\sqrt{x^{\top} Q x}$	$Q_{i j} \leq 0 \& \ldots$		
rotated conic quadratic	$\\|x\\|_{2}^{2} / x_{0}$	$x_{0} \geq 0$		
Log-Exp	$\log \left(\sum_{i=1}^{n} \exp \left(x_{i}\right)\right)$	-		
capped piecewise linear	$\sum_{i=1}^{n} \min \left\{\left(a^{i}\right)^{\top} x, b_{i}\right\}$	$a^{i} \geq 0$		

- May need additional transformation techniques
- Can appear as substructures in applications, e.g. time-varying regression problems (Bertsimas et al. 2021), mean-risk problems, etc.

Extension

Results are applicable to many other obj with submodular structures

	Objective $f(x)$	Condition		
convex diff	$g\left(x_{i}-x_{j}\right)$	$g(\bullet)$ convex		
conic quadratic	$\sqrt{x^{\top} Q x}$	$Q_{i j} \leq 0 \& \ldots$		
rotated conic quadratic	$\\|x\\|_{2}^{2} / x_{0}$	$x_{0} \geq 0$		
Log-Exp	$\log \left(\sum_{i=1}^{n} \exp \left(x_{i}\right)\right)$	-		
capped piecewise linear	$\sum_{i=1}^{n} \min \left\{\left(a^{i}\right)^{\top} x, b_{i}\right\}$	$a^{i} \geq 0$		

- May need additional transformation techniques
- Can appear as substructures in applications, e.g. time-varying regression problems (Bertsimas et al. 2021), mean-risk problems, etc. \Rightarrow How to exploit submodularity?

Extension

Results are applicable to many other obj with submodular structures

	Objective $f(x)$	Condition		
convex diff	$g\left(x_{i}-x_{j}\right)$	$g(\bullet)$ convex		
conic quadratic	$\sqrt{x^{\top} Q x}$	$Q_{i j} \leq 0 \& \ldots$		
rotated conic quadratic	$\\|x\\|_{2}^{2} / x_{0}$	$x_{0} \geq 0$		
Log-Exp	$\log \left(\sum_{i=1}^{n} \exp \left(x_{i}\right)\right)$	-		
capped piecewise linear	$\sum_{i=1}^{n} \min \left\{\left(a^{i}\right)^{\top} x, b_{i}\right\}$	$a^{i} \geq 0$		

- May need additional transformation techniques
- Can appear as substructures in applications, e.g. time-varying regression problems (Bertsimas et al. 2021), mean-risk problems, etc. \Rightarrow How to exploit submodularity? Convexification

Recap

Summary

- Sparse/robust MRF inference problems are polynomially solvable!
- Fast computation of extremal basis
- The computational approach is efficient in practice

Recap

Summary

- Sparse/robust MRF inference problems are polynomially solvable!
- Fast computation of extremal basis
- The computational approach is efficient in practice

Thanks for your listening!

Reference I

Bertsimas, D., Digalakis Jr, V., Li, M. L., and Lami, O. S. (2021). Slowly varying regression under sparsity. arXiv preprint arXiv:2102.10773.
Elmachtoub, A. N. and Grigas, P. (2022). Smart "predict, then optimize". Management Science, 68(1):9-26.
Law, J., Quick, M., and Chan, P. (2014). Bayesian spatio-temporal modeling for analysing local patterns of crime over time at the small-area level. Journal of quantitative criminology, 30:57-78.
Morris, M., Wheeler-Martin, K., Simpson, D., Mooney, S. J., Gelman, A., and DiMaggio, C. (2019). Bayesian hierarchical spatial models: Implementing the besag york mollié model in stan. Spatial and spatio-temporal epidemiology, 31:100301.
Schrunner, S., Bluder, O., Zernig, A., Kaestner, A., and Kern, R. (2017). Markov random fields for pattern extraction in analog wafer test data. In 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA), pages 1-6. IEEE.
Topkis, D. M. (1978). Minimizing a submodular function on a lattice. Operations research, 26(2):305-321.

[^0]: ${ }^{6}$ For delivery purpose, EB defined here is equivalent to but slightly different from the standard one in literature

[^1]: ${ }^{6}$ For delivery purpose, EB defined here is equivalent to but slightly different from the standard one in literature

