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Hyperparameter selection for sparse estimation

Basic Sparse Estimation:

Constraints £ € R" ju € R+ Hyperparameter v > 0

. l . 1 T T l
i o Qr+q x + v O(x)
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Q € R™*™: Stieltjes matrix
Applications e.g., Markov random field

Sparsity inducing
regularizer
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Hyperparameter selection for sparse estimation

Basic Sparse Estimation:

Constraints £ € R" ,u € R+ Hyperparameter v > 0
L |
L] L] L] —I_ —|_
minimize —x Qr+q + v P(x) (1)
I<x<u 2 P ——

Sparsity inducin
Q € R™™": Stieltjes matrix p Y g

T regularizer
Applications e.g., Markov random field

Hyperparameter Selection:

@ Select the best v by some criteria for (1)’s solution, e.g., test error.
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Hyperparameter selection for sparse estimation

Basic Sparse Estimation:

Constraints £ € R” ju € R+ Hyperparameter v > 0
. l . 1 T T l
minimize -z Qxr+q'x 4= v P(x) (1)
<z<u 2 P ——

Sparsity inducin
Q € R"*": Stieltjes matrix p y g

.. regularizer
Applications e.g., Markov random field

Hyperparameter Selection:

@ Select the best v by some criteria for (1)’s solution, e.g., test error.

Parametric Programming:

@ A whole path of (1)’s solution as a function of ~.
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Choice of ®: a dilemma

The ideal choice
o Weighted ¢o : > " 1 pilxilo

@ Mixed integer hence can be computationally prohibitive.

Convex relaxation
e Weighted /¢ : Z?:l pz‘{L’Z’

e Easier to compute but can give us undesirable results.

Nonconvex surrogate
o Weighted capped ¢1: > ", pi min('gf;| ,1),0 >0
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Yo, ¢1 and capped ¢4
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Figure 1: Capped /; is a better approximation to ¢y than /¢
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Choice of ®: a dilemma

The ideal choice
o Weighted ¢p : > .4 pilxilo

e Mixed integer hence can be computationally prohibitive.

Convex relaxation
o Weighted ¢1 : > " | pilx|

e Easier to compute but can us give undesirable results.

Nonconvex surrogate
o Weighted capped ¢1: > ", pi min(k'z;| ,1),6 >0

@ A better approximation to £y but nonconvex and nonsmooth.

@ Analytical properties? How to compute?

e D(irectional)-stationary [« strongly local] solution path.
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The overall goals

e Studying and comparing paths from ¢g, ¢; and capped /7.

e Emphasizing on the d-stationary (d-stat.) path of capped ¢;

o Analytical (e.g., number of pieces)
o Computational (the first rigorous computational study for
nonconvex paths).

e Highlighting the benefit of nonconvex approaches in balancing

o Computational effort
e Statistical and optimization performances
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Previous studies

(1-path (Q is PD)
@ Continuous piecewise affine [Efron et al., 2004].
@ In worst case exponentially many pieces [Mairal and Yu, 2012].

@ Cases guaranteed to have polynomialy many pieces?
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Previous studies

¢1-path (Q is PD)
@ Continuous piecewise affine [Efron et al., 2004].
@ In worst case exponentially many pieces [Mairal and Yu, 2012].

@ Cases guaranteed to have polynomial pieces?

{p-path (equal weights p; = 1)
@ Discontinuous piecewise affine (n + 1 pieces) [Soussen et al., 2015].

@ Unequal weights?
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Previous studies

/1-path (Q is PD)
@ Continuous piecewise affine [Efron et al., 2004].
@ In worst case exponentially many pieces [Mairal and Yu, 2012].

@ Cases guaranteed to have polynomial pieces?

{p-path (equal weights p; = 1)
@ Discontinuous piecewise affine (n + 1 pieces) [Soussen et al., 2015].

@ Unequal weights?

Other nonconvex surrogates (e.g., ¢,, MCP)

@ Parametric nonlinear systems, e.g., v in quadratic terms.
Piecewise smooth paths, cannot be exactly traced in finite time.
Either heuristic [Yukawa and Amari, 2015].

Or fails to approximate the exact ¢y-path [Zhang, 2010].

Capped /; doesn’t have these issues, but how to compute?
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Our contributions: analytical

Deriving special classes:
e Guaranteed to have polynomial many pieces.

e Worst case exponential complexity.
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Our contributions: analytical

Deriving special classes:

e Guaranteed to have polynomial many pieces.

e Worst case exponential complexity.

Regularizer Pieces Optimality Class
lq 2n + 1 global ¢ =0, Stieltjes Q)
l exponential global Non-Stieltjes @
(unequal weights) n+1 global ¢ =0, Stieltjes @
2n2 +3n+1 global ¢ =0, Stieltjes Q)
Capped /4 o
n—+1 d-stat. ¢ =0, Stieltjes Q)

Table 1: Summary of some analytical results
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Our contributions: analytical

Deriving special classes:
e Guaranteed to have polynomial many pieces.

e Worst case exponential complexity.

Regularizer Pieces Optimality Class
2 2n + 1 global ¢ =0, Stieltjes Q)
Lo exponential global Non-Stieltjes
(unequal weights) n+1 global ¢ =0, Stieltjes @
2n2 +3n+1 global ¢ =0, Stieltjes Q)
Capped /4 o
n—+1 d-stat. ¢ =0, Stieltjes Q)

Table 1: Summary of some analytical results

@ They are all piecewise affine.

@ Stieltjes structure is the key for polynomial complexity.
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Our contributions: computational

@ A rigorous method to compute d-stat. paths for capped /1.

e Can be discontinuous!
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Our contributions: computational

@ A rigorous method to compute d-stat. paths for capped /7.
e Can be discontinuous!

o Efficient algorithm (GHP) to restore discontinuity.
o Complexity is strongly polynomial (Stieltjes Q).
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Our contributions: computational

@ A rigorous method to compute d-stat. paths for capped /1.
e Can be discontinuous!

o Efficient algorithm (GHP) to restore discontinuity.
o Complexity is strongly polynomial (Stieltjes Q).

e Benefits of capped ¢; d-stat. path supported by numerical results:

e Way faster than computing /.
e Superior optimization and statistical performance than /;.
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Pivoting method: high level ideas

1 & -
minimize ixTQaZ +q'z 4+ Zpi min {M, 1} (Q)J

(<x<u - )
1=1

e D-stat. path of (2) is piecewise affine in ~.
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Pivoting method: high level ideas

1 & -
minimize ixTQaZ +q'z 4+ Zpi min {M, 1} (Q)J

(<x<u - )
1=1

e D-stat. path of (2) is piecewise affine in ~.

@ To trace the path is to compute these pieces one by one.
e In the direction of v | 0
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Pivoting method: high level ideas

1 & -
mierglirggze 5xTQ$ +q'z 4+ i_zlpi min {%, 1} (Q)J

e D-stat. path of (2) is piecewise affine in ~.
@ To trace the path is to compute these pieces one by one.

@ Each piece is associated with a “basis”.

o Tuple of index sets to restrict the values of solution for (2).
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Pivoting method: high level ideas

1 & -
minimize ixTQCE +q'z 4+ Zpi min {M, 1} (Q)J

(<x<u - )
1=1

e D-stat. path of (2) is piecewise affine in ~.
@ To trace the path is to compute these pieces one by one.

@ Fach piece is associated with a “basis”.

e Fixed basis = reduced problem = reduced solution.
o Not necessarily d-stat. for (2).
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Pivoting method: high level ideas

1 & -
minimize ixTQm +q'z 4+ sz- min {%, 1} (Q)J

(<x<u :
1=1

e D-stat. path of (2) is piecewise affine in ~.
@ To trace the path is to compute these pieces one by one.
@ Each piece is associated with a “basis”.

e Fixed basis = reduced problem = reduced solution.

e Conditions for the reduced solution to be d-stat. of (2).
e Linear inequalities in 7.

e Ratio test: the smallest + for the current basis to be d-stat.
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Pivoting method: high level ideas

1 . -
mierglirggze EQUTQQL‘ +q'z 4+ ?;_lei min {%, 1} (2)

Pivoting method (informal)

e Compute the pieces/bases from right to the left.
@ At the current piece/basis, do ratio test to get v*.

@ When we go beyond ~*, change the basis accordingly.
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Pivoting method: high level ideas

1 . -
mierglirggze ixTQaz +q'z 4+ i_zlpi min {%, 1} (2)

o

Pivoting method (informal)

e Compute the pieces/bases from right to the left.
@ At the current piece/basis, do ratio test to get v*.
@ When we go beyond ~*, change the basis accordingly.

e Discontinuous at +* if taking +4 (not allowed for (2)’s d-stat.).
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Pivoting method: high level ideas

1 . -
mierglirggze EQUTQQL‘ +q'z 4+ ?;_lei min {%, 1} (2)

v

Pivoting method (informal)

e Compute the pieces/bases from right to the left.
@ At the current piece/basis, do ratio test to get v*.
@ When we go beyond ~*, change the basis accordingly.

e Discontinuous at v* if taking +J (not allowed for (2)’s d-stat.).

@ We need an algorithm to restore a d-stat. solution at +* that:

e Doesn’t need to compute from scratch.

e Leverages the Stieltjes () for faster computation.
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The GHP method (informal)

1 = -
migrglirélgze §xTQx +q'z 4+ ;p@- min {|%2|, 1} (2)

High level ideas

e Basis enumeration method, just for an alternative basis.

e Fixed basis = reduced problem = reduced solution.
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The GHP method (informal)

1 & -
migrglirggze EQjTQ(E +q'z+7 ;pi min {%, 1} (2)

High level ideas

e Basis enumeration method, just for an alternative basis.

e Fixed basis = reduced problem = reduced solution.

e Conditions for the reduced solution to be d-stat. for (2).

e Certain index sets should be empty.
e If not, form a new basis by moving them accordingly.

e Proceed to the next steps until such index sets are empty.
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The GHP method

Back to the pivoting method
@ Suppose we are at a discontinuous 7v* where we need to restore.

e Initialize the GHP method with the current “non-d-stationary”
solution, we can prove the following theorem.
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The GHP method

Back to the pivoting method
@ Suppose we are at a discontinuous v* which we need to restore.

e Initialize the GHP method with the current “non-d-stationary”
solution, we can prove the following theorem.

Main theorem of GHP (informal)

GHP with this specialized initialization will terminate in 3n steps with
a d-stationary solution of (2) at ~v*.
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The GHP method

Back to the pivoting method
@ Suppose we are at a discontinuous v* which we need to restore.

e Initialize the GHP method with the current “non-d-stationary”
solution, we can prove the following theorem.

Main theorem of GHP (informal)

GHP with this specialized initialization will terminate in 3n steps with
a d-stationary solution of (2) at v*.

Remark

o [At most 3n GHP subproblems] + [each O(n?) by @Q Stieltjes]
— [total complexity O(n?)].

e It is inductively proved by leveraging a key property of Stieltjes
matrices named the “least element property”. [Pang, 1979].

Ziyu He (USC ISE) Non-convex Solution Paths May 7, 2024 10 /17



Numerical experiments: GMRF

Gaussian Markov Random Field
The maximum a posteriori estimation of Gaussian Markov random
field (GMRF) naturally gives rise to the Stieltjes structure.

Given graph (V, E):

. 1 2 1 2
minimize Z ?(yz —x;)" + Z d—w(wz — ;)
’LGV g (7’7.7)€E

Ziyu He (USC ISE) Non-convex Solution Paths May 7, 2024 11 /17



Numerical experiments: GMRF

Summary: capped ¢; vs. {1 vs. {
@ Settings:
o n € {100,10000}, noise level € (0, 1]
o /y (only for n = 100), ¢1, capped ¢4
o 6 €{10,1,107%,107%} for capped ¢; (controls its approx. to /)
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Numerical experiments: GMRF

Summary: capped ¢; vs. {1 vs. {
@ Settings:
o n € {100,10000}, noise level € (0, 1]

o /y (only for n = 100), ¢1, capped ¢4
o 6 €{10,1,107 1,10~} for capped ¢,

e Computation time:

e Capped ¢, d-stat. path can be 60 - 3,000 times faster than /.
e When ¢ is large, capped /¢; is basically the same as /;.

e When ¢ is small, capped ¢; needs more effort
(can be 10 times slower, no free lunch).

Theorem (no free lunch)

When § < |2Y],Vi € [n] where Z° is the unique solution at v = 0, then
the unique continuous d-stat. path is Z(y) = 2%, Vy > 0.

y
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Numerical experiments: GMRF

Summary: capped ¢; vs. {1 vs. {
@ Settings:
o n € {100,10000}, noise level € (0, 1]

o /y (only for n = 100), ¢1, capped ¢4
o 6 €{10,1,107 1,107} for capped ¢,

e Computation time:

o Capped /; d-stat. path can be 60 - 3,000 times faster than /.
e When ¢ is large, capped /¢; is basically the same as /;.

e When ¢ is small, capped ¢; needs more effort
(can be 10 times slower, no free lunch).

@ Loss value:

o Capped /7 achieves better loss value (%xTQx + ¢q' ) than ¢; when
the solution sparsity is the same!
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GMREF': loss vs. sparsity
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@ When § is small, capped ¢; behaves like ¢y (blue curve in the bottom).
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(b) n = 10000

@ When § is large, capped ¢; behaves like ¢; (black curve on the top).

@ Capped /¢; trade-off (acceptable) computation time to gain superior
optimization and statistical (to be shown) performance.
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Hyperparameter selection

@ We care about the following quantities (X is some ground truth)

Signal recovery:  ©_; Z?:l (:13;'}(7) — X;;)?

Support recovery: >0 >°F | |[z5(v) o — [ Xijlo
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Hyperparameter selection

@ We care about the following quantities (X is some ground truth)
Signal recovery: 77 Y0 (27;(y) — Xij)?
Support recovery: >0 YLy || 25(v) [0 — | Xij lo

e Capped /¢ d-stat. path is superior in hyperparameter selection

o The best capped ¢, solution dominates ¢1’s in both quantities.
o Capped /1 achieves the minimum of both quantities at the same .

e /1 cannot achieve this: we always have to sacrifice one of them.
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Signal vs. support recovery

22 =
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(b) n = 10000

@ For /g, capped ¢, good signal and support recovery are highly correlated.

@ But for ¢, we always have to sacrifice one quantity.
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GHP restoration

Our specialized initialization for GHP restoration leverages the most recent
basis, which turns out to be the key for all the nice properties.

23

,*’ \ —e—capped ¢;: modified GHP
22+ e *\ —-—- capped f;: naive GHP
‘ \ Al

21

Signal Recovery

10 20 30 40 50 60 70 80
Support Recovery

Hyperparameter selection from the naive initialization is worse than /;.
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Numerical experiments: summary

e Computation time:

e Capped ¢ path is much more scalable than ¢y path.
o Capped ¢; path (small §) needs more (acceptable) effort than ¢;.
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Numerical experiments: summary

e Computation time:

o Capped /¢, path is much more scalable than ¢y path.
o Capped /1 path (small §) needs more (acceptable) effort than /1.

e Optimization performance:

o Capped /1 path (small §) is a better approximation to the ¢y path.
e For the same sparsity, capped ¢; achieves better loss than /.
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Numerical experiments: summary

e Computation time:

e Capped /1 path is much more scalable than ¢y path.
o Capped /1 path (small §) needs more (acceptable) effort than /1.

e Optimization performance:

o Capped /1 path (small §) is a better approximation to the £y path.
e For the same sparsity, capped ¢; achieves better loss than /.

e Hyperparameter selection:

o Capped /1: minimal signal and support recovery at the same ~.
e /1 path does not have such ~.
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Numerical experiments: summary

e Computation time:

o Capped ¢, path is much more scalable than ¢y path.
o Capped /1 path (small §) needs more (acceptable) effort than /1.

e Optimization performance:

o Capped /1 path (small §) is a better approximation to the ¢y path.
e For the same sparsity, capped ¢ always achieves better loss than /5.

o Hyperparameter selection:

e Capped /1: minimal signal and support recovery at the same ~.
e /1 path does not have such 7.

@ The GHP restoration is critical for all the nice practical
properties.
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