Department of Industrial and Systems Engineering University of Southern California

Comparing Solution Paths of Sparse Quadratic Minimization with a Stieltjes Matrix

$$
\text { May 7, } 2024
$$

Ziyu He, Shaoning Han, Andrés Gómez, Ying Cui, Jong-Shi Pang

Hyperparameter selection for sparse estimation

Basic Sparse Estimation:

Constraints $\ell \in \mathbb{R}_{-}^{n}, u \in \mathbb{R}^{+}$

$\underset{\ell \leq x \leq u}{\operatorname{minimize}} \underbrace{\frac{1}{2} x^{\top} Q x+q^{\top} x}_{Q \in \mathbb{R}^{n \times n}: \text { Stieltjes matrix }}$
Applications e.g., Markov random field

Hyperparameter $\gamma \geq 0$
\downarrow

Sparsity inducing regularizer

Hyperparameter selection for sparse estimation

Basic Sparse Estimation:

Hyperparameter Selection:

- Select the best γ by some criteria for (1)'s solution, e.g., test error.

Hyperparameter selection for sparse estimation

Basic Sparse Estimation:

Hyperparameter Selection:

- Select the best γ by some criteria for (1)'s solution, e.g., test error.

Parametric Programming:

- A whole path of (1)'s solution as a function of γ.

Choice of Φ : a dilemma

The ideal choice

- Weighted $\ell_{0}: \sum_{i=1}^{n} p_{i}\left|x_{i}\right|_{0}$
- Mixed integer hence can be computationally prohibitive.

Convex relaxation

- Weighted $\ell_{1}: \sum_{i=1}^{n} p_{i}\left|x_{i}\right|$
- Easier to compute but can give us undesirable results.

Nonconvex surrogate

- Weighted capped $\ell_{1}: \sum_{i=1}^{n} p_{i} \min \left(\frac{\left|x_{i}\right|}{\delta}, 1\right), \delta>0$

ℓ_{0}, ℓ_{1} and capped ℓ_{1}

Figure 1: Capped ℓ_{1} is a better approximation to ℓ_{0} than ℓ_{1}

Choice of Φ : a dilemma

The ideal choice

- Weighted $\ell_{0}: \sum_{i=1}^{n} p_{i}\left|x_{i}\right|_{0}$
- Mixed integer hence can be computationally prohibitive.

Convex relaxation

- Weighted $\ell_{1}: \sum_{i=1}^{n} p_{i}\left|x_{i}\right|$
- Easier to compute but can us give undesirable results.

Nonconvex surrogate

- Weighted capped $\ell_{1}: \sum_{i=1}^{n} p_{i} \min \left(\frac{\left|x_{i}\right|}{\delta}, 1\right), \delta>0$
- A better approximation to ℓ_{0} but nonconvex and nonsmooth.
- Analytical properties? How to compute?
- D(irectional)-stationary [\Leftrightarrow strongly local] solution path.

The overall goals

- Studying and comparing paths from ℓ_{0}, ℓ_{1} and capped ℓ_{1}.
- Emphasizing on the d-stationary (d-stat.) path of capped ℓ_{1}
- Analytical (e.g., number of pieces)
- Computational (the first rigorous computational study for nonconvex paths).
- Highlighting the benefit of nonconvex approaches in balancing
- Computational effort
- Statistical and optimization performances

Previous studies

ℓ_{1}-path (Q is $\mathbf{P D}$)

- Continuous piecewise affine [Efron et al., 2004].
- In worst case exponentially many pieces [Mairal and Yu, 2012].
- Cases guaranteed to have polynomialy many pieces?

Previous studies

ℓ_{1}-path (Q is PD)

- Continuous piecewise affine [Efron et al., 2004].
- In worst case exponentially many pieces [Mairal and Yu, 2012].
- Cases guaranteed to have polynomial pieces?
ℓ_{0}-path (equal weights $p_{i} \equiv 1$)
- Discontinuous piecewise affine ($n+1$ pieces) [Soussen et al., 2015].
- Unequal weights?

Previous studies

ℓ_{1}-path (Q is $\mathbf{P D}$)

- Continuous piecewise affine [Efron et al., 2004].
- In worst case exponentially many pieces [Mairal and Yu, 2012].
- Cases guaranteed to have polynomial pieces?
ℓ_{0}-path (equal weights $p_{i} \equiv 1$)
- Discontinuous piecewise affine ($n+1$ pieces) [Soussen et al., 2015].
- Unequal weights?

Other nonconvex surrogates (e.g., ℓ_{p}, MCP)

- Parametric nonlinear systems, e.g., γ in quadratic terms.
- Piecewise smooth paths, cannot be exactly traced in finite time.
- Either heuristic [Yukawa and Amari, 2015].
- Or fails to approximate the exact ℓ_{0}-path [Zhang, 2010].
- Capped ℓ_{1} doesn't have these issues, but how to compute?

Our contributions: analytical

Deriving special classes:

- Guaranteed to have polynomial many pieces.
- Worst case exponential complexity.

Our contributions: analytical

Deriving special classes:

- Guaranteed to have polynomial many pieces.
- Worst case exponential complexity.

Regularizer	Pieces	Optimality	Class
ℓ_{1}	$2 n+1$	global	$\ell=0$, Stieltjes Q
ℓ_{0}	exponential	global	Non-Stieltjes Q
(unequal weights)	$n+1$	global	$\ell=0$, Stieltjes Q
Capped ℓ_{1}	$2 n^{2}+3 n+1$	global	$\ell=0$, Stieltjes Q
	$n+1$	d-stat.	$\ell=0$, Stieltjes Q

Table 1: Summary of some analytical results

Our contributions: analytical

Deriving special classes:

- Guaranteed to have polynomial many pieces.
- Worst case exponential complexity.

Regularizer	Pieces	Optimality	Class
ℓ_{1}	$2 n+1$	global	$\ell=0$, Stieltjes Q
ℓ_{0}	exponential	global	Non-Stieltjes Q
(unequal weights)	$n+1$	global	$\ell=0$, Stieltjes Q
Capped ℓ_{1}	$2 n^{2}+3 n+1$	global	$\ell=0$, Stieltjes Q
	$n+1$	d-stat.	$\ell=0$, Stieltjes Q

Table 1: Summary of some analytical results

- They are all piecewise affine.
- Stieltjes structure is the key for polynomial complexity.

Our contributions: computational

- A rigorous method to compute d-stat. paths for capped ℓ_{1}. - Can be discontinuous!

Our contributions: computational

- A rigorous method to compute d-stat. paths for capped ℓ_{1}.
- Can be discontinuous!
- Efficient algorithm (GHP) to restore discontinuity.
- Complexity is strongly polynomial (Stieltjes Q).

Our contributions: computational

- A rigorous method to compute d-stat. paths for capped ℓ_{1}.
- Can be discontinuous!
- Efficient algorithm (GHP) to restore discontinuity.
- Complexity is strongly polynomial (Stieltjes Q).
- Benefits of capped ℓ_{1} d-stat. path supported by numerical results:
- Way faster than computing ℓ_{0}.
- Superior optimization and statistical performance than ℓ_{1}.

Pivoting method: high level ideas

$$
\begin{equation*}
\underset{\ell \leq x \leq u}{\operatorname{minimize}} \frac{1}{2} x^{\top} Q x+q^{\top} x+\gamma \sum_{i=1}^{n} p_{i} \min \left\{\frac{\left|x_{i}\right|}{\delta}, 1\right\} \tag{2}
\end{equation*}
$$

- D-stat. path of (2) is piecewise affine in γ.

Pivoting method: high level ideas

$$
\begin{equation*}
\underset{\ell \leq x \leq u}{\operatorname{minimize}} \frac{1}{2} x^{\top} Q x+q^{\top} x+\gamma \sum_{i=1}^{n} p_{i} \min \left\{\frac{\left|x_{i}\right|}{\delta}, 1\right\} \tag{2}
\end{equation*}
$$

- D-stat. path of (2) is piecewise affine in γ.
- To trace the path is to compute these pieces one by one.
- In the direction of $\gamma \downarrow 0$

Pivoting method: high level ideas

$$
\begin{equation*}
\underset{\ell \leq x \leq u}{\operatorname{minimize}} \frac{1}{2} x^{\top} Q x+q^{\top} x+\gamma \sum_{i=1}^{n} p_{i} \min \left\{\frac{\left|x_{i}\right|}{\delta}, 1\right\} \tag{2}
\end{equation*}
$$

- D-stat. path of (2) is piecewise affine in γ.
- To trace the path is to compute these pieces one by one.
- Each piece is associated with a "basis".
- Tuple of index sets to restrict the values of solution for (2).

Pivoting method: high level ideas

$$
\begin{equation*}
\underset{\ell \leq x \leq u}{\operatorname{minimize}} \frac{1}{2} x^{\top} Q x+q^{\top} x+\gamma \sum_{i=1}^{n} p_{i} \min \left\{\frac{\left|x_{i}\right|}{\delta}, 1\right\} \tag{2}
\end{equation*}
$$

- D-stat. path of (2) is piecewise affine in γ.
- To trace the path is to compute these pieces one by one.
- Each piece is associated with a "basis".
- Fixed basis \Rightarrow reduced problem \Rightarrow reduced solution.
- Not necessarily d-stat. for (2).

Pivoting method: high level ideas

$$
\begin{equation*}
\underset{\ell \leq x \leq u}{\operatorname{minimize}} \frac{1}{2} x^{\top} Q x+q^{\top} x+\gamma \sum_{i=1}^{n} p_{i} \min \left\{\frac{\left|x_{i}\right|}{\delta}, 1\right\} \tag{2}
\end{equation*}
$$

- D-stat. path of (2) is piecewise affine in γ.
- To trace the path is to compute these pieces one by one.
- Each piece is associated with a "basis".
- Fixed basis \Rightarrow reduced problem \Rightarrow reduced solution.
- Conditions for the reduced solution to be d-stat. of (2).
- Linear inequalities in γ.
- Ratio test: the smallest γ for the current basis to be d-stat.

Pivoting method: high level ideas

$$
\begin{equation*}
\underset{\ell \leq x \leq u}{\operatorname{minimize}} \frac{1}{2} x^{\top} Q x+q^{\top} x+\gamma \sum_{i=1}^{n} p_{i} \min \left\{\frac{\left|x_{i}\right|}{\delta}, 1\right\} \tag{2}
\end{equation*}
$$

Pivoting method (informal)

- Compute the pieces/bases from right to the left.
- At the current piece/basis, do ratio test to get γ^{*}.
- When we go beyond γ^{*}, change the basis accordingly.

Pivoting method: high level ideas

$$
\begin{equation*}
\underset{\ell \leq x \leq u}{\operatorname{minimize}} \frac{1}{2} x^{\top} Q x+q^{\top} x+\gamma \sum_{i=1}^{n} p_{i} \min \left\{\frac{\left|x_{i}\right|}{\delta}, 1\right\} \tag{2}
\end{equation*}
$$

Pivoting method (informal)

- Compute the pieces/bases from right to the left.
- At the current piece/basis, do ratio test to get γ^{*}.
- When we go beyond γ^{*}, change the basis accordingly.
- Discontinuous at γ^{*} if taking $\pm \delta$ (not allowed for (2)'s d-stat.).

Pivoting method: high level ideas

$$
\begin{equation*}
\underset{\ell \leq x \leq u}{\operatorname{minimize}} \frac{1}{2} x^{\top} Q x+q^{\top} x+\gamma \sum_{i=1}^{n} p_{i} \min \left\{\frac{\left|x_{i}\right|}{\delta}, 1\right\} \tag{2}
\end{equation*}
$$

Pivoting method (informal)

- Compute the pieces/bases from right to the left.
- At the current piece/basis, do ratio test to get γ^{*}.
- When we go beyond γ^{*}, change the basis accordingly.
- Discontinuous at γ^{*} if taking $\pm \delta$ (not allowed for (2)'s d-stat.).
- We need an algorithm to restore a d-stat. solution at γ^{*} that:
- Doesn't need to compute from scratch.
- Leverages the Stieltjes Q for faster computation.

The GHP method (informal)

$$
\begin{equation*}
\underset{\ell \leq x \leq u}{\operatorname{minimize}} \frac{1}{2} x^{\top} Q x+q^{\top} x+\gamma \sum_{i=1}^{n} p_{i} \min \left\{\frac{\left|x_{i}\right|}{\delta}, 1\right\} \tag{2}
\end{equation*}
$$

High level ideas

- Basis enumeration method, just for an alternative basis.
- Fixed basis \Rightarrow reduced problem \Rightarrow reduced solution.

The GHP method (informal)

$$
\begin{equation*}
\underset{\ell \leq x \leq u}{\operatorname{minimize}} \frac{1}{2} x^{\top} Q x+q^{\top} x+\gamma \sum_{i=1}^{n} p_{i} \min \left\{\frac{\left|x_{i}\right|}{\delta}, 1\right\} \tag{2}
\end{equation*}
$$

High level ideas

- Basis enumeration method, just for an alternative basis.
- Fixed basis \Rightarrow reduced problem \Rightarrow reduced solution.
- Conditions for the reduced solution to be d-stat. for (2).
- Certain index sets should be empty.
- If not, form a new basis by moving them accordingly.
- Proceed to the next steps until such index sets are empty.

The GHP method

Back to the pivoting method

- Suppose we are at a discontinuous γ^{*} where we need to restore.
- Initialize the GHP method with the current "non-d-stationary" solution, we can prove the following theorem.

The GHP method

Back to the pivoting method

- Suppose we are at a discontinuous γ^{*} which we need to restore.
- Initialize the GHP method with the current "non-d-stationary" solution, we can prove the following theorem.

Main theorem of GHP (informal)

GHP with this specialized initialization will terminate in $3 n$ steps with a d-stationary solution of (2) at γ^{*}.

The GHP method

Back to the pivoting method

- Suppose we are at a discontinuous γ^{*} which we need to restore.
- Initialize the GHP method with the current "non-d-stationary" solution, we can prove the following theorem.

Main theorem of GHP (informal)

GHP with this specialized initialization will terminate in $3 n$ steps with a d-stationary solution of (2) at γ^{*}.

Remark

- [At most $3 n$ GHP subproblems] $+\left[\operatorname{each} \mathcal{O}\left(n^{3}\right)\right.$ by Q Stieltjes $]$ $\Longrightarrow\left[\right.$ total complexity $\left.\mathcal{O}\left(n^{4}\right)\right]$.
- It is inductively proved by leveraging a key property of Stieltjes matrices named the "least element property". [Pang, 1979].

Numerical experiments: GMRF

Gaussian Markov Random Field

The maximum a posteriori estimation of Gaussian Markov random field (GMRF) naturally gives rise to the Stieltjes structure.

Given graph (V, E) :

$$
\underset{x}{\operatorname{minimize}} \sum_{i \in V} \frac{1}{\sigma_{i}^{2}}\left(y_{i}-x_{i}\right)^{2}+\sum_{(i, j) \in E} \frac{1}{d_{i j}}\left(x_{i}-x_{j}\right)^{2}
$$

Numerical experiments: GMRF

Summary: capped ℓ_{1} vs. ℓ_{1} vs. ℓ_{0}

- Settings:
- $n \in\{100,10000\}$, noise level $\in(0,1]$
- ℓ_{0} (only for $n=100$), ℓ_{1}, capped ℓ_{1}
- $\delta \in\left\{10,1,10^{-1}, 10^{-4}\right\}$ for capped ℓ_{1} (controls its approx. to ℓ_{0})

Numerical experiments: GMRF

Summary: capped ℓ_{1} vs. ℓ_{1} vs. ℓ_{0}

- Settings:
- $n \in\{100,10000\}$, noise level $\in(0,1]$
- ℓ_{0} (only for $n=100$), ℓ_{1}, capped ℓ_{1}
- $\delta \in\left\{10,1,10^{-1}, 10^{-4}\right\}$ for capped ℓ_{1}
- Computation time:
- Capped ℓ_{1} d-stat. path can be 60-3,000 times faster than ℓ_{0}.
- When δ is large, capped ℓ_{1} is basically the same as ℓ_{1}.
- When δ is small, capped ℓ_{1} needs more effort (can be 10 times slower, no free lunch).

Theorem (no free lunch)

When $\delta<\left|\bar{x}_{i}^{0}\right|, \forall i \in[n]$ where \bar{x}^{0} is the unique solution at $\gamma=0$, then the unique continuous d-stat. path is $\bar{x}(\gamma)=\bar{x}^{0}, \forall \gamma \geq 0$.

Numerical experiments: GMRF

Summary: capped ℓ_{1} vs. ℓ_{1} vs. ℓ_{0}

- Settings:
- $n \in\{100,10000\}$, noise level $\in(0,1]$
- ℓ_{0} (only for $n=100$), ℓ_{1}, capped ℓ_{1}
- $\delta \in\left\{10,1,10^{-1}, 10^{-4}\right\}$ for capped ℓ_{1}
- Computation time:
- Capped ℓ_{1} d-stat. path can be 60-3,000 times faster than ℓ_{0}.
- When δ is large, capped ℓ_{1} is basically the same as ℓ_{1}.
- When δ is small, capped ℓ_{1} needs more effort (can be 10 times slower, no free lunch).
- Loss value:
- Capped ℓ_{1} achieves better loss value $\left(\frac{1}{2} x^{\top} Q x+q^{\top} x\right)$ than ℓ_{1} when the solution sparsity is the same!

GMRF: loss vs. sparsity

- When δ is small, capped ℓ_{1} behaves like ℓ_{0} (blue curve in the bottom).
- When δ is large, capped ℓ_{1} behaves like ℓ_{1} (black curve on the top).
- Capped ℓ_{1} trade-off (acceptable) computation time to gain superior optimization and statistical (to be shown) performance.

Hyperparameter selection

- We care about the following quantities (X is some ground truth)

Signal recovery: $\sum_{i=1}^{p} \sum_{j=1}^{p}\left(x_{i j}^{*}(\gamma)-X_{i j}\right)^{2}$
Support recovery: $\left.\sum_{i=1}^{p} \sum_{j=1}^{p}| | x_{i j}^{*}(\gamma)\right|_{0}-\left|X_{i j}\right|_{0} \mid$

Hyperparameter selection

- We care about the following quantities (X is some ground truth)

$$
\begin{aligned}
& \text { Signal recovery: } \sum_{i=1}^{p} \sum_{j=1}^{p}\left(x_{i j}^{*}(\gamma)-X_{i j}\right)^{2} \\
& \text { Support recovery: }\left.\sum_{i=1}^{p} \sum_{j=1}^{p}| | x_{i j}^{*}(\gamma)\right|_{0}-\left|X_{i j}\right|_{0} \mid
\end{aligned}
$$

- Capped ℓ_{1} d-stat. path is superior in hyperparameter selection
- The best capped ℓ_{1} solution dominates ℓ_{1} 's in both quantities.
- Capped ℓ_{1} achieves the minimum of both quantities at the same γ.
- ℓ_{1} cannot achieve this: we always have to sacrifice one of them.

Signal vs. support recovery

- For ℓ_{0}, capped ℓ_{1}, good signal and support recovery are highly correlated.
- But for ℓ_{1}, we always have to sacrifice one quantity.

GHP restoration

Our specialized initialization for GHP restoration leverages the most recent basis, which turns out to be the key for all the nice properties.

Hyperparameter selection from the naïve initialization is worse than ℓ_{1}.

Numerical experiments: summary

- Computation time:
- Capped ℓ_{1} path is much more scalable than ℓ_{0} path.
- Capped ℓ_{1} path (small δ) needs more (acceptable) effort than ℓ_{1}.

Numerical experiments: summary

- Computation time:
- Capped ℓ_{1} path is much more scalable than ℓ_{0} path.
- Capped ℓ_{1} path (small δ) needs more (acceptable) effort than ℓ_{1}.
- Optimization performance:
- Capped ℓ_{1} path (small δ) is a better approximation to the ℓ_{0} path.
- For the same sparsity, capped ℓ_{1} achieves better loss than ℓ_{1}.

Numerical experiments: summary

- Computation time:
- Capped ℓ_{1} path is much more scalable than ℓ_{0} path.
- Capped ℓ_{1} path (small δ) needs more (acceptable) effort than ℓ_{1}.
- Optimization performance:
- Capped ℓ_{1} path (small δ) is a better approximation to the ℓ_{0} path.
- For the same sparsity, capped ℓ_{1} achieves better loss than ℓ_{1}.
- Hyperparameter selection:
- Capped ℓ_{1} : minimal signal and support recovery at the same γ.
- ℓ_{1} path does not have such γ.

Numerical experiments: summary

- Computation time:
- Capped ℓ_{1} path is much more scalable than ℓ_{0} path.
- Capped ℓ_{1} path (small δ) needs more (acceptable) effort than ℓ_{1}.
- Optimization performance:
- Capped ℓ_{1} path (small δ) is a better approximation to the ℓ_{0} path.
- For the same sparsity, capped ℓ_{1} always achieves better loss than ℓ_{1}.
- Hyperparameter selection:
- Capped ℓ_{1} : minimal signal and support recovery at the same γ.
- ℓ_{1} path does not have such γ.
- The GHP restoration is critical for all the nice practical properties.

Reference

䒠
Efron，B．，Hastie，T．，Johnstone，I．，\＆Tibshirani，R．（2004）．Least angle regression．The Annals of statistics，32（2），407－499．
R Mairal，J．，\＆Yu，B．（2012）．Complexity analysis of the lasso regularization path．arXiv preprint arXiv：1205．0079．
國 Soussen，C．，Idier，J．，Duan，J．，\＆Brie，D．（2015）．Homotopy Based Algorithms for ℓ_{0}－Regularized Least－Squares．IEEE Transactions on Signal Processing， 63 （13），3301－3316．
：
Yukawa，M．，\＆Amari，S．I．（2015）．ℓ_{p}－Regularized Least Squares $(0<p<1)$ and Critical Path．IEEE Transactions on Information Theory，62（1），488－502．
嘈
Zhang，C．H．（2010）．Nearly Unbiased Variable Selection Under Minimax Concave Penalty．The Annals of statistics，38（2），894－942．
－1
Pang，J．S．（1979）．On a class of least－element complementarity problems． Mathematical Programming，16（1），111－126．
目 Pang，J．S．，\＆Chandrasekaran，R．（1985）．Linear complementarity problems solvable by a polynomially bounded pivoting algorithm．In Mathematical Programming Essays in Honor of George B．Dantzig Part II（pp．13－27）． Springer，Berlin，Heidelberg．

