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Hyperparameter selection for sparse estimation

Basic Sparse Estimation:

Constraints ℓ ∈ Rn
−, u ∈ R+ Hyperparameter γ ≥ 0y y

minimize
ℓ≤x≤u

1

2
x⊤Qx+ q⊤x︸ ︷︷ ︸

Q ∈ Rn×n: Stieltjes matrix

Applications e.g., Markov random field

+ γ Φ(x)︸︷︷︸
Sparsity inducing

regularizer

(1)
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Sparsity inducing
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Hyperparameter Selection:

Select the best γ by some criteria for (1)’s solution, e.g., test error.
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Hyperparameter selection for sparse estimation

Basic Sparse Estimation:

Constraints ℓ ∈ Rn
−, u ∈ R+ Hyperparameter γ ≥ 0y y

minimize
ℓ≤x≤u

1

2
x⊤Qx+ q⊤x︸ ︷︷ ︸

Q ∈ Rn×n: Stieltjes matrix

Applications e.g., Markov random field

+ γ Φ(x)︸︷︷︸
Sparsity inducing

regularizer

(1)

Hyperparameter Selection:

Select the best γ by some criteria for (1)’s solution, e.g., test error.

Parametric Programming:

A whole path of (1)’s solution as a function of γ.
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Choice of Φ: a dilemma

The ideal choice

Weighted ℓ0 :
∑n

i=1 pi|xi|0
Mixed integer hence can be computationally prohibitive.

Convex relaxation

Weighted ℓ1 :
∑n

i=1 pi|xi|
Easier to compute but can give us undesirable results.

Nonconvex surrogate

Weighted capped ℓ1:
∑n

i=1 pimin( |xi|
δ , 1), δ > 0
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ℓ0, ℓ1 and capped ℓ1

(a) ℓ0 function (b) ℓ0, ℓ1 and Capped ℓ1

Figure 1: Capped ℓ1 is a better approximation to ℓ0 than ℓ1
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Choice of Φ: a dilemma

The ideal choice

Weighted ℓ0 :
∑n

i=1 pi|xi|0
Mixed integer hence can be computationally prohibitive.

Convex relaxation

Weighted ℓ1 :
∑n

i=1 pi|xi|
Easier to compute but can us give undesirable results.

Nonconvex surrogate

Weighted capped ℓ1:
∑n

i=1 pimin( |xi|
δ , 1), δ > 0

A better approximation to ℓ0 but nonconvex and nonsmooth.

Analytical properties? How to compute?

D(irectional)-stationary [⇔ strongly local] solution path.
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The overall goals

Studying and comparing paths from ℓ0, ℓ1 and capped ℓ1.

Emphasizing on the d-stationary (d-stat.) path of capped ℓ1
Analytical (e.g., number of pieces)
Computational (the first rigorous computational study for
nonconvex paths).

Highlighting the benefit of nonconvex approaches in balancing

Computational effort
Statistical and optimization performances

Ziyu He (USC ISE) Non-convex Solution Paths May 7, 2024 4 / 17



Previous studies

ℓ1-path (Q is PD)

Continuous piecewise affine [Efron et al., 2004].

In worst case exponentially many pieces [Mairal and Yu, 2012].

Cases guaranteed to have polynomialy many pieces?
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Continuous piecewise affine [Efron et al., 2004].

In worst case exponentially many pieces [Mairal and Yu, 2012].

Cases guaranteed to have polynomial pieces?

ℓ0-path (equal weights pi ≡ 1)

Discontinuous piecewise affine (n+ 1 pieces) [Soussen et al., 2015].

Unequal weights?
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Previous studies

ℓ1-path (Q is PD)

Continuous piecewise affine [Efron et al., 2004].

In worst case exponentially many pieces [Mairal and Yu, 2012].

Cases guaranteed to have polynomial pieces?

ℓ0-path (equal weights pi ≡ 1)

Discontinuous piecewise affine (n+ 1 pieces) [Soussen et al., 2015].

Unequal weights?

Other nonconvex surrogates (e.g., ℓp, MCP)

Parametric nonlinear systems, e.g., γ in quadratic terms.

Piecewise smooth paths, cannot be exactly traced in finite time.

Either heuristic [Yukawa and Amari, 2015].

Or fails to approximate the exact ℓ0-path [Zhang, 2010].

Capped ℓ1 doesn’t have these issues, but how to compute?
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Our contributions: analytical

Deriving special classes:

Guaranteed to have polynomial many pieces.

Worst case exponential complexity.
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Our contributions: analytical

Deriving special classes:

Guaranteed to have polynomial many pieces.

Worst case exponential complexity.

Regularizer Pieces Optimality Class

ℓ1 2n+ 1 global ℓ = 0, Stieltjes Q

ℓ0

(unequal weights)

exponential global Non-Stieltjes Q

n+ 1 global ℓ = 0, Stieltjes Q

Capped ℓ1
2n2 + 3n+ 1 global ℓ = 0, Stieltjes Q

n+ 1 d-stat. ℓ = 0, Stieltjes Q

Table 1: Summary of some analytical results

Ziyu He (USC ISE) Non-convex Solution Paths May 7, 2024 6 / 17



Our contributions: analytical
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Guaranteed to have polynomial many pieces.

Worst case exponential complexity.

Regularizer Pieces Optimality Class

ℓ1 2n+ 1 global ℓ = 0, Stieltjes Q

ℓ0

(unequal weights)

exponential global Non-Stieltjes Q

n+ 1 global ℓ = 0, Stieltjes Q

Capped ℓ1
2n2 + 3n+ 1 global ℓ = 0, Stieltjes Q

n+ 1 d-stat. ℓ = 0, Stieltjes Q

Table 1: Summary of some analytical results

They are all piecewise affine.

Stieltjes structure is the key for polynomial complexity.
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Our contributions: computational

A rigorous method to compute d-stat. paths for capped ℓ1.

Can be discontinuous!
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Efficient algorithm (GHP) to restore discontinuity.

Complexity is strongly polynomial (Stieltjes Q).
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Our contributions: computational

A rigorous method to compute d-stat. paths for capped ℓ1.

Can be discontinuous!

Efficient algorithm (GHP) to restore discontinuity.

Complexity is strongly polynomial (Stieltjes Q).

Benefits of capped ℓ1 d-stat. path supported by numerical results:

Way faster than computing ℓ0.
Superior optimization and statistical performance than ℓ1.
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Pivoting method: high level ideas

minimize
ℓ≤x≤u

1

2
x⊤Qx+ q⊤x+ γ

n∑
i=1

pimin

{
|xi|
δ

, 1

}
(2)

D-stat. path of (2) is piecewise affine in γ.
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Pivoting method: high level ideas

minimize
ℓ≤x≤u

1

2
x⊤Qx+ q⊤x+ γ

n∑
i=1

pimin

{
|xi|
δ

, 1

}
(2)

D-stat. path of (2) is piecewise affine in γ.

To trace the path is to compute these pieces one by one.

In the direction of γ ↓ 0

Ziyu He (USC ISE) Non-convex Solution Paths May 7, 2024 8 / 17



Pivoting method: high level ideas

minimize
ℓ≤x≤u

1

2
x⊤Qx+ q⊤x+ γ

n∑
i=1

pimin

{
|xi|
δ

, 1

}
(2)

D-stat. path of (2) is piecewise affine in γ.

To trace the path is to compute these pieces one by one.

Each piece is associated with a “basis”.

Tuple of index sets to restrict the values of solution for (2).
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Pivoting method: high level ideas

minimize
ℓ≤x≤u

1

2
x⊤Qx+ q⊤x+ γ

n∑
i=1

pimin

{
|xi|
δ

, 1

}
(2)

D-stat. path of (2) is piecewise affine in γ.

To trace the path is to compute these pieces one by one.

Each piece is associated with a “basis”.

Fixed basis ⇒ reduced problem ⇒ reduced solution.

Not necessarily d-stat. for (2).
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Pivoting method: high level ideas

minimize
ℓ≤x≤u

1

2
x⊤Qx+ q⊤x+ γ

n∑
i=1

pimin

{
|xi|
δ

, 1

}
(2)

D-stat. path of (2) is piecewise affine in γ.

To trace the path is to compute these pieces one by one.

Each piece is associated with a “basis”.

Fixed basis ⇒ reduced problem ⇒ reduced solution.

Conditions for the reduced solution to be d-stat. of (2).

Linear inequalities in γ.

Ratio test: the smallest γ for the current basis to be d-stat.
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Pivoting method: high level ideas

minimize
ℓ≤x≤u

1

2
x⊤Qx+ q⊤x+ γ

n∑
i=1

pimin

{
|xi|
δ

, 1

}
(2)

Pivoting method (informal)

Compute the pieces/bases from right to the left.

At the current piece/basis, do ratio test to get γ∗.

When we go beyond γ∗, change the basis accordingly.
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Pivoting method (informal)

Compute the pieces/bases from right to the left.
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When we go beyond γ∗, change the basis accordingly.

Discontinuous at γ∗ if taking ±δ (not allowed for (2)’s d-stat.).
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Pivoting method: high level ideas

minimize
ℓ≤x≤u

1

2
x⊤Qx+ q⊤x+ γ

n∑
i=1

pimin

{
|xi|
δ

, 1

}
(2)

Pivoting method (informal)

Compute the pieces/bases from right to the left.

At the current piece/basis, do ratio test to get γ∗.

When we go beyond γ∗, change the basis accordingly.

Discontinuous at γ∗ if taking ±δ (not allowed for (2)’s d-stat.).

We need an algorithm to restore a d-stat. solution at γ∗ that:

Doesn’t need to compute from scratch.

Leverages the Stieltjes Q for faster computation.
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The GHP method (informal)

minimize
ℓ≤x≤u

1

2
x⊤Qx+ q⊤x+ γ

n∑
i=1

pimin

{
|xi|
δ

, 1

}
(2)

High level ideas

Basis enumeration method, just for an alternative basis.

Fixed basis ⇒ reduced problem ⇒ reduced solution.
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The GHP method (informal)

minimize
ℓ≤x≤u

1

2
x⊤Qx+ q⊤x+ γ

n∑
i=1

pimin

{
|xi|
δ

, 1

}
(2)

High level ideas

Basis enumeration method, just for an alternative basis.

Fixed basis ⇒ reduced problem ⇒ reduced solution.

Conditions for the reduced solution to be d-stat. for (2).

Certain index sets should be empty.

If not, form a new basis by moving them accordingly.

Proceed to the next steps until such index sets are empty.
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The GHP method

Back to the pivoting method

Suppose we are at a discontinuous γ∗ where we need to restore.

Initialize the GHP method with the current “non-d-stationary”
solution, we can prove the following theorem.
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The GHP method

Back to the pivoting method

Suppose we are at a discontinuous γ∗ which we need to restore.

Initialize the GHP method with the current “non-d-stationary”
solution, we can prove the following theorem.

Main theorem of GHP (informal)

GHP with this specialized initialization will terminate in 3n steps with
a d-stationary solution of (2) at γ∗.
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The GHP method

Back to the pivoting method

Suppose we are at a discontinuous γ∗ which we need to restore.

Initialize the GHP method with the current “non-d-stationary”
solution, we can prove the following theorem.

Main theorem of GHP (informal)

GHP with this specialized initialization will terminate in 3n steps with
a d-stationary solution of (2) at γ∗.

Remark

[At most 3n GHP subproblems] + [each O(n3) by Q Stieltjes]
=⇒ [total complexity O(n4)].

It is inductively proved by leveraging a key property of Stieltjes
matrices named the “least element property”. [Pang, 1979].
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Numerical experiments: GMRF

Gaussian Markov Random Field

The maximum a posteriori estimation of Gaussian Markov random
field (GMRF) naturally gives rise to the Stieltjes structure.

Given graph (V,E):

minimize
x

∑
i∈V

1

σ2
i

(yi − xi)
2 +

∑
(i,j)∈E

1

dij
(xi − xj)

2
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Numerical experiments: GMRF

Summary: capped ℓ1 vs. ℓ1 vs. ℓ0
Settings:

n ∈ {100, 10000}, noise level ∈ (0, 1]

ℓ0 (only for n = 100), ℓ1, capped ℓ1

δ ∈ {10, 1, 10−1, 10−4} for capped ℓ1 (controls its approx. to ℓ0)
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Numerical experiments: GMRF

Summary: capped ℓ1 vs. ℓ1 vs. ℓ0
Settings:

n ∈ {100, 10000}, noise level ∈ (0, 1]

ℓ0 (only for n = 100), ℓ1, capped ℓ1

δ ∈ {10, 1, 10−1, 10−4} for capped ℓ1

Computation time:

Capped ℓ1 d-stat. path can be 60 - 3,000 times faster than ℓ0.

When δ is large, capped ℓ1 is basically the same as ℓ1.

When δ is small, capped ℓ1 needs more effort
(can be 10 times slower, no free lunch).

Theorem (no free lunch)

When δ < |x̄0i |,∀i ∈ [n] where x̄0 is the unique solution at γ = 0, then
the unique continuous d-stat. path is x̄(γ) = x̄0, ∀γ ≥ 0.
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Numerical experiments: GMRF

Summary: capped ℓ1 vs. ℓ1 vs. ℓ0
Settings:

n ∈ {100, 10000}, noise level ∈ (0, 1]

ℓ0 (only for n = 100), ℓ1, capped ℓ1

δ ∈ {10, 1, 10−1, 10−4} for capped ℓ1

Computation time:

Capped ℓ1 d-stat. path can be 60 - 3,000 times faster than ℓ0.

When δ is large, capped ℓ1 is basically the same as ℓ1.

When δ is small, capped ℓ1 needs more effort
(can be 10 times slower, no free lunch).

Loss value:

Capped ℓ1 achieves better loss value ( 12x
⊤Qx+ q⊤x) than ℓ1 when

the solution sparsity is the same!
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GMRF: loss vs. sparsity

(a) n = 100 (b) n = 10000

When δ is small, capped ℓ1 behaves like ℓ0 (blue curve in the bottom).

When δ is large, capped ℓ1 behaves like ℓ1 (black curve on the top).

Capped ℓ1 trade-off (acceptable) computation time to gain superior
optimization and statistical (to be shown) performance.
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Hyperparameter selection

We care about the following quantities (X is some ground truth)

Signal recovery:
∑p

i=1

∑p
j=1 (x

∗
ij(γ) − Xij )

2

Support recovery:
∑p

i=1

∑p
j=1

∣∣∣ |x∗ij(γ) |0 − |Xij |0
∣∣∣
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Hyperparameter selection

We care about the following quantities (X is some ground truth)

Signal recovery:
∑p

i=1

∑p
j=1 (x

∗
ij(γ) − Xij )

2

Support recovery:
∑p

i=1

∑p
j=1

∣∣∣ |x∗ij(γ) |0 − |Xij |0
∣∣∣

Capped ℓ1 d-stat. path is superior in hyperparameter selection

The best capped ℓ1 solution dominates ℓ1’s in both quantities.

Capped ℓ1 achieves the minimum of both quantities at the same γ.

ℓ1 cannot achieve this: we always have to sacrifice one of them.
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Signal vs. support recovery

(a) n = 100 (b) n = 10000

For ℓ0, capped ℓ1, good signal and support recovery are highly correlated.

But for ℓ1, we always have to sacrifice one quantity.
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GHP restoration

Our specialized initialization for GHP restoration leverages the most recent
basis, which turns out to be the key for all the nice properties.

Hyperparameter selection from the näıve initialization is worse than ℓ1.
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Numerical experiments: summary

Computation time:

Capped ℓ1 path is much more scalable than ℓ0 path.
Capped ℓ1 path (small δ) needs more (acceptable) effort than ℓ1.
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Capped ℓ1 path (small δ) is a better approximation to the ℓ0 path.
For the same sparsity, capped ℓ1 achieves better loss than ℓ1.
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Optimization performance:

Capped ℓ1 path (small δ) is a better approximation to the ℓ0 path.
For the same sparsity, capped ℓ1 achieves better loss than ℓ1.

Hyperparameter selection:

Capped ℓ1: minimal signal and support recovery at the same γ.
ℓ1 path does not have such γ.

Ziyu He (USC ISE) Non-convex Solution Paths May 7, 2024 16 / 17



Numerical experiments: summary

Computation time:

Capped ℓ1 path is much more scalable than ℓ0 path.
Capped ℓ1 path (small δ) needs more (acceptable) effort than ℓ1.

Optimization performance:

Capped ℓ1 path (small δ) is a better approximation to the ℓ0 path.
For the same sparsity, capped ℓ1 always achieves better loss than ℓ1.

Hyperparameter selection:

Capped ℓ1: minimal signal and support recovery at the same γ.
ℓ1 path does not have such γ.

The GHP restoration is critical for all the nice practical
properties.
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